The mission of the Melanoma Research Alliance (MRA) is to end suffering and death due to melanoma by collaborating with all stakeholders to accelerate powerful research, advance cures for all patients, and prevent more melanomas.

Founded in 2007 by melanoma survivor Debra Black and her husband, Leon, under the auspices of the Milken Institute, MRA has ushered in a dynamic new era of scientific progress. MRA has become the largest non-profit funder of melanoma research, funding $110 million in cutting-edge studies and leveraging millions more from other sources during the last decade. Thanks to the generous support of our founders, 100% of all donations to MRA go directly to research.
A conversation with someone who has recently been diagnosed with late stage melanoma is radically different than it was just a few years ago. Today, we have more treatment options than ever before—in fact 12 new options have earned FDA approval since MRA’s founding, and each year, progress continues to be made. This unprecedented progress serves as a testament to the tenacity and determination of patients, clinicians, researchers, and the generosity of countless donors.

Despite this incredible progress—and the prolific research pipeline that has made it possible—facing melanoma is still incredibly difficult. Because melanoma remains a very serious foe.

When talking with people starting—or in the thick of—their melanoma journey, we outline the incredible advancements that have been made and do what we can to offer as much hope as possible.

For the Melanoma Research Alliance (MRA), this hope is grounded in sound science and promising research—something we know well. That’s because no other nonprofit has funded more research in the fight against melanoma than MRA. Since our founding, we’ve directly invested more than $110 million into innovative research and leveraged an additional $200 million from outside sources.

While impressive, we know that this progress is not sufficient. This year alone over 7,600 people will die from late stage melanoma and over 96,000 will be diagnosed with invasive disease.

Some people’s melanoma is resistant to even our best treatment options. Other people develop melanomas that are so rare—or so stubborn—that successful treatment options have yet to be found. And regardless of treatment options available, far too many people are forced to have the difficult conversation—telling their loved ones that they have melanoma in the first place.
This report is for these people.

We are proud to showcase our many achievements from the last year, and also highlight examples of how MRA strives every day to push the field further and to raise the bar higher for patients who need it most. Our mission of ending death and suffering due to melanoma remains steadfast in all we do, and this report captures just a few of those efforts.

None of this would be possible without the many individuals, organizations, government officials, and corporations who have joined us in our mission. Our work would not be possible without you.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTER FROM THE CHAIR AND PRESIDENT</td>
<td>02</td>
</tr>
<tr>
<td>RAISING THE BAR</td>
<td>06</td>
</tr>
<tr>
<td>The Good Fight: Resisting Resistance</td>
<td>08</td>
</tr>
<tr>
<td>Harnessing Artificial Intelligence to Detect Melanoma Earlier</td>
<td>10</td>
</tr>
<tr>
<td>A Brave New World: Applying AI to Melanoma</td>
<td>12</td>
</tr>
<tr>
<td>Doubling Down on Rare Melanomas</td>
<td>14</td>
</tr>
<tr>
<td>Rare Melanomas, Real People: Meet David</td>
<td>16</td>
</tr>
<tr>
<td>MRA’s Charge</td>
<td>17</td>
</tr>
<tr>
<td>2019 MRA RESEARCH AWARDS</td>
<td>18</td>
</tr>
<tr>
<td>Established Investigator Awards</td>
<td>19</td>
</tr>
<tr>
<td>Pilot Awards</td>
<td>21</td>
</tr>
<tr>
<td>Young Investigator Awards</td>
<td>22</td>
</tr>
<tr>
<td>ANNUAL REPORT RECOGNITION LISTS</td>
<td>26</td>
</tr>
<tr>
<td>2018 Donors &amp; Supporters</td>
<td>27</td>
</tr>
<tr>
<td>Financials</td>
<td>30</td>
</tr>
<tr>
<td>MRA Board of Directors</td>
<td>32</td>
</tr>
<tr>
<td>MRA Staff</td>
<td>33</td>
</tr>
<tr>
<td>Scientific Advisory Panel</td>
<td>34</td>
</tr>
<tr>
<td>Medical Advisory Panel</td>
<td>36</td>
</tr>
<tr>
<td>Grant Review Committee</td>
<td>38</td>
</tr>
<tr>
<td>Honor and Memorials</td>
<td>41</td>
</tr>
</tbody>
</table>
Over its 12 years, MRA has been a catalyzing force in mobilizing resources, talent, and energy towards its mission to end suffering and death due to melanoma worldwide.

As a funder, MRA has directly invested more than $110 million – and leveraged an additional $200 million from other sources – to become the largest non-profit funder of melanoma research worldwide. This flood of capital has helped to usher in a new paradigm in melanoma treatment – where patients have more options and hope than ever.

As a convener, MRA’s Scientific Retreat brings partners together from across the globe to share best practices, emerging technologies, and promising treatments. The Scientific Retreat also serves as a reminder about the importance of this work, who it’s for, and that no one individual or institution can go it alone. MRA’s Melanoma > Exchange (available at www.curemelanoma.org/community) connects patients and loved ones to a vibrant online community that understands what it means to face melanoma, head on.
Inch by inch, year by year, and breakthrough by breakthrough, the melanoma field has made unprecedented progress that has transformed the way melanoma is diagnosed and treated. For many patients this progress is rewriting the book about what it means to face melanoma. However, there is still more to do.

That's because for about half of patients with late-stage melanoma, the road ahead is still fraught with uncertainty. Despite the paradigm-busting progress that has been made, too many people still aren’t responding to any of the currently approved therapies.

**MRA is moving full steam ahead by focusing on traditional areas of exploration such as drug development and predictive biomarkers, approaching stubborn challenges with new perspectives, and by leveraging new technology and science from all areas.**

**Patients diagnosed with melanoma today have more reasons than ever to be optimistic:**

- Advancements in melanoma research and available treatments—including targeted therapies, immunotherapies, and novel combinations—are on the rise.
- In fact, 12 new treatment approaches have earned FDA approval since 2011.
- And because of these new treatment options, people are living longer and healthier lives with melanoma. We are making great headway.
- MRA continues to raise the bar by galvanizing unprecedented partnerships, support, and funding across academia, government, and industry to go even further, faster.
“For a lot of people, the revolution isn’t here,” says Dr. Caroline Robert, Head, Dermatology Unit at the Institut Gustave Roussy, the largest cancer center in France and Co-Chair of the MRA Grant Review Committee.

“We know that some people will do less well than others,” says Robert, “but honestly, when we begin treatment, we can’t predict who will respond, so we need new biomarkers.” Dr. Robert’s work focuses on resistance, where treatment either stops working—a term called “acquired resistance” or where patients do not respond to any therapy at all—a term called “primary resistance.”

Dr. Robert is a recipient of a 2018 Team Science Award and is spearheading a three-year project funded by MRA seeking to learn why some cancer cells, instead of dying, adapt and modify their protein and messenger RNA production in response to treatment. Knowing this will help clinicians better identify when to provide treatment, when to stop, and better predict how a patient is likely to respond to treatment prior to starting it.

Hearing Dr. Robert talk about her work sounds akin to a general preparing for battle: “I want to kill melanoma cells. I don’t care what tool I use to do it,” she says. Robert tries to think like the enemy. “We need to put ourselves in the role of the cells: What would we do if we were trying to invade someone? We would hide, eat whatever is available—these cells eat what other cells don’t want—and we would wait. We know they hide because they appear years later and we’re trying to figure out where they’re hiding so we can stop their reappearance.”

MRA-funded research is particularly important in advancing this knowledge. Despite targeted therapies killing the majority of tumor cells, often a small population of drug-resistant “persister” cells remain by making large-scale changes to their protein expression patterns. “Cells are getting smarter and are modifying themselves so we need to focus on the nexus,” says Robert, referring to a complex of proteins. Blocking a component of the protein complex that translates the genetic code has the potential to inhibit these evasion tactics.

For patients whose tumors are regressing, Dr. Robert and her team take samples and study the expression of the genes. They are looking closely at the tumor cells that persist in the face of targeted therapy, and are testing a new protein inhibitor designed to kill these cells. Lab results with mouse models are promising and suggest that when combined sequentially with already existing targeted therapies, this new inhibitor enhances tumor cell death.

In time, Dr. Robert hopes to begin testing this work in the clinic with patients. If successful, it could represent a new chapter in the melanoma playbook—one that prolongs the length of time that treatment is effective and addresses resistance head on.
In time, Dr. Robert hopes to begin testing this work in the clinic with patients. If successful, it could represent a new chapter in the melanoma playbook—one that prolongs the length of time that treatment is effective and addresses resistance head on.
As an internist, Dr. Joann Elmore was taught to ask questions. Those questions led her to spend much of her career in breast cancer research where she found extensive variability among radiologists’ interpretation of mammograms. “Radiology data is subjective, just like art. You’re being asked to classify visual data,” Elmore says.

It wasn’t until she was on the receiving end of a Friday night phone call alerting her to a “suspicious” skin biopsy, however, did Elmore’s interest in melanoma peak. Elmore’s biopsy specimens were sent to two pathologists. “As a physician, I had always assumed a pathologist’s diagnosis was the ‘gold standard,’” she says, “however, I received two very different diagnoses on the opposite ends of the spectrum on my own skin biopsy: one said it was invasive melanoma and the other said it was benign.” As such, Elmore sent the specimen for yet another opinion, this one to a pathologist who had written textbooks on the topic and had decades of experience. His diagnosis landed somewhere in the middle and acknowledged that it was atypical but not in the classification of invasive melanoma. Now, more than a decade later, Dr. Elmore has had no recurrences.

Based on this experience, Dr. Elmore expanded her research from radiology to pathology. “Pathologists, like radiologists, are also looking at image data and I realized there was way too much variability, and I wanted to better understand why—and what we could do about it.”

Dr. Elmore received a National Institutes of Health (NIH) grant to study the accuracy of diagnostic screening and biopsy interpretation. The study looked at all melanoma-type biopsies and was able to capture how often there was variability in interpretation among providers. Slides were presented in random order to 187 pathologists who provided their diagnoses using an online histology data collection form. Months later, the same exact
Elmore is partnering with a world renowned computer scientist Dr. Linda Shapiro at the University of Washington who specializes in computer visualization of complex information, as well as leading pathologists around the globe to develop an artificial intelligence (AI)-based diagnostic system.

Elmore and her team are evaluating whether computers can assess cell size, shape, and other details from images of skin biopsies in order to help improve the accuracy – and consistency – of melanoma diagnoses. “For each skin biopsy, there can be hundreds of thousands of cells,” explains Elmore. This also sheds light on why melanoma biopsies are so complicated and challenging for pathologists and why AI, which can scan thousands of cells and readily cross-reference information, may improve the future of melanoma medicine.

“Although we are still in the early phases, this is critical work,” says Elmore. According to a report by the National Academies of Sciences, Engineering, and Medicine, improvements in the diagnostic process are a “moral, professional, and public health imperative.”

Indeed, a diagnosis is the building block on which all other medical treatment is based. On the other end of these biopsies are real patients: patients answering the late-night, anxiety-inducing phone calls; patients undergoing invasive surgeries; patients weighing their next clinical steps. Not all of these patients will seek out three opinions like Elmore did, but all of them deserve an accurate diagnosis.

Elmore’s research also showcases MRA’s commitment to working across fields to fund the most promising research and to recruit innovative researchers. Doing so injects fresh ideas that are needed to move the field forward and to raise the bar ever higher, so that today’s challenges can be tomorrow’s success stories.

“MRA creates and supports multidisciplinary collaborations,” says Elmore. “They get it. Science is better as a team approach and I’m looking forward to seeing what’s next.”

---

“AI will change everything in the world—and melanoma is no exception,” says Dr. Allan C. Halpern, Chief of Dermatology at Memorial Sloan Kettering Cancer Center.

Halpern is a board-certified internist and dermatologist with a specialization in skin cancer, especially melanoma. Much of his clinical career has focused on early detection and management of melanoma, and he has pushed the field to adopt and leverage technology to better image and track peoples’ skin over time.

Halpern pioneered the use of a whole-body, 3-D imaging system to assist in the detection of changing moles and other skin lesions. The computerized system creates a baseline digital photographic record of the patient’s moles, searchable by size, color, and other factors; which can then assist the dermatologist in monitoring and assessing subsequent changes over time. This includes subtle changes that can be more difficult for dermatologists to catch but which are critical for identifying melanoma at the earliest stage possible. “This can help you identify the outliers,” explains Halpern. “In clinical practice, this technology isn’t being widely used yet, but we expect that this is where it’s going.” This work was first supported by an MRA-Industry Partnership Award, and has since been successfully commercialized.

According to the U.S. Preventive Services Task Force, limitations in clinician visual skin examinations can lead to both over treatment and over-diagnosis. For patients, this can mean unnecessary procedures, scarring, and even functional limitations.

One challenge to widespread adoption of this technology is that the field of dermatology doesn’t have standard image requirements. In response, Halpern, and others like him, are working hard to develop digital communication standards.
To help make this happen, Halpern leads the International Skin Imaging Collaboration (ISIC)—an academic and industry partnership designed to facilitate the clinical application of digital skin imaging in melanoma. The ISIC community invites people to download images and use them for educational purposes. They also host competitions to create algorithms to better spot early melanomas. “What’s exciting,” says Halpern, “is when we compared the algorithms against 510 clinicians including dermatologists from around the world, the algorithms outperformed the majority of them. While this ‘artificial experiment’ was performed without the clinicians interacting with the patients, it does demonstrate that current computer algorithms are already pretty powerful. As we give computers lots more data, including both images and clinical information, we anticipate that their performance will continue to improve.”

While the vast majority of past MRA-funded research projects have focused on later-stage melanoma treatments, work like Halpern’s is laying an important foundation for future awards needed to move the field forward towards earlier detection and treatment. In particular, although early-stage melanoma is challenging for dermatologists to identify, AI might change that. Doing so would have significant benefits for patients as it would improve early diagnosis of melanoma.

“AI isn’t new,” Halpern says. “There have been multiple waves of AI. What’s different and exciting about this current wave is that it teaches computers like we teach kids, learning by example. This has been made possible because computers are much more powerful than they were years ago and now have nearly limitless storage.” Current AI uses what is known as “deep learning” one example of which are “convolutional neural networks.” These algorithms use multiple layers of analysis to learn directly from raw data. Such networks are particularly well suited for analysis of visual information, provided there are large enough collections of data for training. The recent availability of very large general image datasets give the algorithms a head start for analyzing new types of images, such as skin lesions.

Properly training AI for melanoma, however, will require a lot more imaging in clinical practice, collecting high-quality images, controlling for bias, and doing a better job applying what is learned so as to avoid unnecessary biopsies.

“It’s not a question of if we’ll use this technology, but when,” says Halpern. He is, however, quick to preface that this is not man against machine. AI, and those in support of it, are not trying to put people out of work. “What we want are better diagnoses,” says Halpern. “Even dermatologists do better when they know what the computer analysis is saying.”

Work like Halpern’s raises the bar of what is possible and begins to fill a critical niche: catching melanoma early when it is most treatable and survival rates are greatest. The implications are truly profound for patients and for professionals alike. “There are lots of opportunities for MRA to be involved in this work and to help implement it the right way,” says Halpern. Indeed, AI—much like MRA’s mission—requires collaboration.

The groundwork has started; the revolution is here; the technology is capable; and the time is now.
When someone says “melanoma,” they think skin. Indeed cutaneous (skin) melanoma is the most common type of melanoma, accounting for roughly 90% of cases and receiving the lion's share of funding. But what about the remaining 10% of melanomas?

Acral, uveal, and mucosal melanoma – known collectively as ‘rare melanomas’ – represent a type of black hole for the clinical community. We know far less about them—what causes them, how they progress, and how to effectively treat them. Rare melanomas frequently appear in parts of the body that are shielded from the sun (such as palms, under fingernails, in eyes, or nasal cavities), and so their development is not directly related to sun exposure. And because these areas of the body aren’t traditionally associated with melanoma, patients with rare melanomas are more likely to have late diagnoses and poorer prognoses.

Recognizing the importance of accelerating research and improving outcomes for people diagnosed with rare melanomas, MRA has invested more than $10.3 million through 22 awards specifically focused on these subtypes. This makes MRA the largest, non-profit funder research focused on rare melanoma worldwide.

Dr. Titia de Lange is hoping her research will help drive change in this rare melanoma space. de Lange is a recipient of The Black Family-MRA Team Science Award and is examining acral melanoma on the chromosome level to determine whether a process known as “telomere crisis,” which causes extensive damage to a cell’s genome, contributes to acral melanoma development and progression. de Lange, who is Director of the Anderson Center for Cancer Research, a Leon Hess professor, and the head of the Laboratory of Cell Biology and Genetics at Rockefeller University, has spent more than 25 years researching telomeres, the protective elements at the ends of chromosomes.

Telomeres look like broken DNA but are not broken DNA at all. Instead, they are, in fact, critical for the stability and maintenance of genetic information. Telomeres are shielded by a dynamic complex of six proteins, which de Lange has dubbed “shelterin,” which helps regulate the length of telomeres and shelters them from DNA repair processes—an incredibly important but complex and still somewhat mysterious process.

1 To learn more about rare melanomas and melanoma subtypes, visit www.curemelanoma.org/about-melanoma/types/
This type of research is so important because if you only fund research on existing treatments then you will never find the next big breakthrough.

Flawed telomere function, however, can generate genome instability and drive cancer progression. “Cells are programmed to go through regeneration but cells that go through too many divisions are likely associated with cancer,” explains de Lange. “Eventually cells peel off and die; however, some cells break through this ‘death order’ and can create tumors and chaos.” This telomere crisis is very frequent in early stage cancers and telomere dysfunction also contributes to genome rearrangements in tumors.

de Lange, who studies telomere function became interested in acral melanoma because it occurs in parts of the body that receive little sun exposure (and correspondingly little UV damage) and as a result, acral tumor cells have fewer mutations. Instead, acral melanoma cells often have large-scale changes to their genomes – for instance, large sections of chromosomes are either deleted or increased in number – changes that may result because of alterations to telomeres, which regulate so-called ‘genome stability’.

de Lange’s 3-year research project is examining how acral melanomas arise and what causes these chromosomal changes. She is also hoping to identify molecules that can be targeted with future therapies. de Lange says it’s critical to keep an open mind for hypothesis-driven, basic research of what happens inside cells.

“What I hope patients know is that we are working as hard as we can to better understand this disease,” says de Lange. “Our highest hope is that we have greater insight into how melanoma chromosomes and tumors function so that we can develop biomarkers for disease staging and predictive information to help us with prognosis, diagnosis, and so on,” says de Lange.

de Lange underscores the importance of organizations like MRA providing funding for preliminary research to let initial pilot projects mature: “I want everyone to know just how important it is that MRA is willing to take risks and fund research like this in its early stages. I don’t think our project would have been funded by the NIH. This type of research is so important because if you only fund research on existing treatments then you will never find the next big breakthrough.”
David Marx was shocked when he was diagnosed with Stage 3 melanoma in 2018. He always thought melanoma was 'skin cancer' and had no idea it could develop in areas that aren’t regularly exposed to the sun like his toenail.

Following surgery to remove his primary melanoma and affected lymph nodes, David’s oncologist, chair of MRA’s Medical Advisory Panel, Dr. Michael Atkins suggested adjuvant therapy. Adjuvant therapy is additional treatment given after surgery, with the goal of reducing the risk of melanoma returning. For patients with Stage 3 melanoma like David, up to 60% will relapse within three years of surgical resection without adjuvant therapy.1

After talking with Dr. Atkins, David and his wife Linda decided to move forward with monthly infusions of the immunotherapy, nivolumab. He began a year-long course of adjuvant therapy about five weeks after surgery.

“The side effects I’ve experienced - itchiness and feeling tired have been a minor inconvenience,” says David. “I also know that I’m doing everything I can to keep melanoma from returning.”

---

MRA’S CHARGE

For patients for whom treatments and outcomes have been less certain and less successful, for researchers with big ideas that provide promise but need piloting, for cross-industry and cross-discipline projects that could change the landscape as we know it, MRA is here championing for you each step of the way. Together, we are raising the bar—standing on the shoulders of those who have fought before us and setting the precedent for those who have yet to come.
A complete listing of all MRA grant awards, along with abstracts, can be accessed online at CureMelanoma.org/Grants
Established Investigator Awards

Established Investigator Awards support senior investigators with an existing record of scientific productivity and accomplishment and who are past the initial four years of their first academic faculty appointment.

Epigenetic Regulation of Resistance to Targeted Therapies in Melanoma: Dissects a molecular pathway of a treatment-resistance to BRAF inhibitors and tests specific inhibitors to overcome treatment resistance.

- **MRA Established Investigator Award**
- **Rhoda Alani, Boston University**

Targeting MAPK and PI3K Signaling via CK2 Inhibition in Acral Melanoma: Investigates the possibility of using CK2 inhibitors, in combination with currently used therapies, to improve treatment outcomes in NF1 mutant acral melanoma.

- **MRA Established Investigator Award, collaboratively funded by Columbia University**
- **Angela Christiano, Columbia University**

Applying AI to Assess Histologic Features to Improve Melanoma Diagnosis: Uses novel computational techniques to improve the ability to accurately and reproducibly diagnose melanoma, and ultimately enhance patient care.

- **Michael and Jacqueline Ferro Family Foundation - MRA Established Investigator Award for Artificial Intelligence Applied to Melanoma**
- **Joanne Elmore, David Geffen School of Medicine at UCLA**

DGAT1 is a Novel Melanoma Oncogene: Aims to dissect how fatty acid metabolism affects melanoma cells and whether targeting this pathway therapeutically can hamper melanoma growth.

- **MRA Established Investigator Award**
- **Adam Hurlstone, University of Manchester**

Eradicating Melanoma Drug-Tolerant Cells: Aims to understand and therapeutically target the nongenetic strategies tumors use to evade treatment.

- **MRA Established Investigator Award**
- **Jean-Christophe Marine, VIB (Vlaams Instituut voor Biotechnologie)**

Enhanced-OCT for Discriminating Nevi from Melanomas: Aims to improve the accuracy of melanoma diagnosis by applying artificial intelligence to optical coherence tomography imaging.

- **Michael and Jacqueline Ferro Family Foundation - MRA Established Investigator Award for Artificial Intelligence Applied to Melanoma**
- **Mohammadreza Nasiriavanaki, Wayne State University**

Developing a Predictive Tool Using Machine Learning Algorithm in Melanoma: Will apply artificial intelligence to microscopic images to predict which Stage III patients will benefit from additional treatment after surgery.

- **MRA Established Investigator Award, collaboratively funded by New York University School of Medicine**
- **Iman Osman, New York University School of Medicine**

Metabolic Control of T Cell Senescence for Melanoma Immunotherapy: Will uncover how altered energy usage leads to T cell dysfunction and will develop strategies to overcome this in melanoma.

- **MRA Established Investigator Award**
- **Guangyong Peng, Saint Louis University**
Preclinical Development of a Disrupter of BRAF-Containing Dimers: Aims to determine how best to use a next-generation BRAF inhibitor to maximize its antitumor activity with the goal of advancing these findings to the clinic.

*MRA Established Investigator Award
Neal Rosen, Memorial Sloan-Kettering Cancer Center

Studying the Effects of Intra-tumor Heterogeneity on Anti-tumor Immunity: Uses a novel melanoma mouse model to better understand the body’s anti-tumor immune response, which could lead to strategies to enhance response rates to therapy.

*MRA Established Investigator Award
Yardena Samuels, Weizmann Institute of Science

Nanomedicine Targeting Melanoma-Astrocytes Interplay in 3D Brain Metastases: Will establish 3D-printed models of melanoma brain metastases to elucidate how melanoma spreads to the brain and to evaluate the efficacy of novel therapeutics.

*MRA Established Investigator Award
Ronit Satchi-Fainaro, Tel Aviv University

Targeting CD39 in Melanoma: Will test whether targeting the cell surface enzyme CD39 either alone or in combination with approved immunotherapies is a promising therapeutic strategy for melanoma.

*MRA Established Investigator Award
Mark Smyth, Queensland Institute of Medical Research
Mechanism of EBF3 Tumor Suppression in Melanoma: Seeks to better understand how alterations in the protein EBF3 drives melanoma formation and responsiveness to immunotherapy.

*MRA Established Investigator Award*

Hensin Tsao, Massachusetts General Hospital

Proof of Practice: Melanoma Screening Using Computer Vision: Addresses major barriers holding back the use of computer-assisted diagnostic devices in the clinic to improve melanoma detection.

*MRA Established Investigator Award, collaboratively funded by University of California, San Francisco*

Maria Wei, University of California, San Francisco

Understanding and Targeting Metabolic Heterogeneity in Melanoma: Examines the differences in energy usage among melanoma cells and how this impacts responsiveness to therapy.

*MRA Established Investigator Award*

Bin Zheng, Massachusetts General Hospital

Finding Pathways That Drive T Cells Into Melanoma: Aims to find drugs that can enhance T cell recruitment to the tumors and to decipher how they work using a zebrafish model.

*MRA Established Investigator Award*

Leonard Zon, Harvard University

---

**Pilot Awards**

MRA Pilot Awards test potentially transformative ideas that do not have extensive preliminary data but articulate a clear hypothesis and translational goals. Resources for such “high-risk, high-reward” projects are important to establish proof-of-concept, which may then leverage additional funding through more traditional avenues.

Development of Novel YAP-TEAD Inhibitors for Uveal Melanoma: Seeks to develop a novel, first-in-class drugs for the treatment of melanoma of the eye.

*MRA Pilot Award*

Fernando Camargo, Children’s Hospital Boston

Mitochondrial Control of Melanoma Initiation: Aims to delineate how changes to mitochondria, the body’s energy-producing cellular machines, impact melanoma initiation, progression and treatment.

*MRA Pilot Award, collaboratively funded by Icahn School of Medicine at Mount Sinai*

Jerry Chipuk, Icahn School of Medicine at Mount Sinai
Blood Vessel Co-option by Brain Tropic Melanoma Cells: Seeks to better understand how melanoma cells invade the brain via their ability to interact with the brain’s blood vessels, and target this process therapeutically.

**MRA Pilot Award**

**Andrew Dudley, University of Virginia School of Medicine**

Spliced Immune Receptors for Immune Regulation and Melanoma Immunotherapy: Aims to explore the mechanism of action on potential therapeutic applications for a novel immunostimulatory molecule.

**MRA Pilot Award**

**Michal Lotem, Hadassah Medical Organization**

Targeting Ferroptosis to Combat Resistant Forms of Melanoma: To determine whether a novel pathway of cell death can be therapeutically manipulated to kill melanoma cells.

**MRA Pilot Award**

**James Olzmann, University of California, Berkeley**

Young Investigator Awards

MRA Young Investigator Awards aim to attract early career scientists with novel ideas into melanoma research, thereby recruiting and supporting the next generation of melanoma researchers. Young Investigators are scientists within four years of their first academic faculty appointment. A mentorship commitment from a senior investigator is required.

Identification of Metabolic Liabilities of Melanoma Cells: Seeks to understand how melanoma metabolism changes when a tumor first forms and eventually spreads to other areas of the body.

**MRA Young Investigator Award**

**Kivanc Birsoy, The Rockefeller University**

Discovering Unconventional CD8+ T Cell Epitopes in Metastatic Cutaneous Melanoma: Aims to develop cell-based therapies targeting a novel class of tumor antigens.

**Bristol-Myers Squibb - MRA Young Investigator Award in Immunotherapy**

**Yiwen Chen, University of Texas MD Anderson Cancer Center**

Optimization of GITR Antibodies for Melanoma Immunotherapy: Focuses on enhancing the therapeutic activity of an immunostimulatory antibody to improve its anti-cancer activity.

**MRA Young Investigator Award, collaboratively funded by Weizmann Institute of Science**

**Rony Dahan, Weizmann Institute of Science**
**Targeting Copy Number Alterations to Overcome Immune Evasion in Melanoma:** Will study how large scale deletions and amplifications of melanoma cell genomes contributes to therapeutic response and resistance.

*Julie and Edward J. Minskoff - MRA Young Investigator Award*

*Teresa Davoli, New York University School of Medicine*

**The Multifaceted AMBRA1-based Signaling in Melanoma Response to Therapy:** Seeks to understand how the novel tumor suppressor gene AMBRA1 contributes to melanoma progression and responsiveness to treatment.

*Daniela De Zio, Kraeftens Bekaempelse*

**Microbial Metabolites in Immunotherapy of Malignant Melanoma:** Investigates how a bacterial product found in the gut influences the responsiveness of melanoma to immunotherapy.

*Bristol-Myers Squibb - MRA Young Investigator Award in Immunotherapy*

*Simon Heidegger, Technical University Munich*

**TANK-Binding Kinase 1 (TBK1) As A Novel Cancer Immunotherapy Target:** Will explore whether inhibiting the protein TBK1 can help enhance responsiveness and overcome resistance to anti-PD1 blockade.

*Tara Miller Melanoma Foundation - MRA Young Investigator Award*

*Russell Jenkins, Massachusetts General Hospital*
Transcriptional and Epigenetic Regulators of Melanoma Initiation: Aims to use a zebrafish model of melanoma to identify the molecular events that drive the transition of normal melanocytes to malignant melanoma.

*MRA Young Investigator Award*

Charles Kaufman, Washington University in St. Louis

Investigating Host Immune Factors in Mediating Immune Related Adverse Event: Will conduct studies to gain a better understanding of immune-related adverse events (irAEs) to expand immunotherapy use and prevent toxicities in patients.

*Society for Immunotherapy of Cancer – MRA Young Investigator Award*

Shaheen Khan, UT Southwestern Medical Center

Dissecting Tumor–Immune Cell Interactions in Uveal Melanoma: Investigates how the immune system interacts with ocular melanoma cells and modulates their metastatic potential.

*Ellen and Gary Davis - MRA Young Investigator Award*

Ashley Laughney, Joan & Sanford I. Weill Medical College of Cornell University

Identifying New Molecular Targets and Drugs to Treat Resistant Melanoma: Uses a unique chemical platform to identify novel drug leads to treat therapy-resistant melanoma.

*Jill and Jay Bernstein - MRA Young Investigator Award*

Nir London, Weizmann Institute of Science

Factors that Influence Artificial Intelligence-based Melanoma Diagnosis: Uses artificial intelligence (AI) approaches to combine clinical images with patient metadata to improve melanoma diagnosis.

*Michael and Jacqueline Ferro Family Foundation - MRA Young Investigator Award for Artificial Intelligence Applied to Melanoma*

Veronica Rotemberg, Memorial Sloan-Kettering Cancer Center

Elucidating Cross-Presentation of Melanoma-Derived Antigens: Aims to understand at a cellular level why some patients do not respond to checkpoint immunotherapy.

*Lee Grinberg Family-MRA Young Investigator Award*

Stefani Spranger, Massachusetts Institute of Technology

Dr. Eva Hernando at the 2019 MRA Scientific Retreat
Available at www.curemelanoma.org/community is a vibrant online community led by patients and caregivers with firsthand understanding of melanoma and clinical trials and experts from the MRA staff. Together, these community leaders have cultivated a unique environment where patients can get true insight into key milestones such as being diagnosed, choosing and going through treatment or finding the right clinical trial, and addressing any implications with friends and family.

**Community Leaders:**
- Tracy Callahan
- T.J. Sharpe
- Jamie Troil Goldfarb
- Cheryl Trocke

Lisa Simms Booth, Dr. Sapna Patel, and T.J. Sharpe at the Melanoma > Exchange Forum
ANNUAL REPORT
RECOGNITION LISTS
DONORS FISCAL YEAR 2018

$500,000+
Bank of America/U.S. Trust
Debra and Leon Black
BJ’s Wholesale Club
Bristol-Myers Squibb Company
Michael and Jacqueline Ferro Family Foundation

$250,000-$499,999
Barclay’s
Anna-Maria and Stephen Kellen Foundation
Kirkland & Ellis
L’Oreal Paris
Paul, Wiess, Rifkind, Wharton & Garrison LLP
Sokoloff Family Trust
Sotheby’s

$100,000-$249,999
Paul Abecassis
Citi
Credit Suisse
Susan and John Hess
Kirkland & Ellis LLP
Merck & Co., Inc.
Tara Miller Melanoma Foundation
James O. Robbins Family Trust
Saban Family Foundation
Society for Immunotherapy of Cancer
Veritas Capital Management, Inc.
Wachtell, Lipton, Rosen & Katz

$50,000-$99,999
Amgen, Inc.
Aon
Jill and Jay Bernstein
Bloomberg LP
Ronnie Heyman and Ward Blum
Brownstein, Hyatt, Farber & Schreck
Ellen and Gary Davis
Deloitte
Amanda and Jonathan Ellman Fitch Ratings
Karen Mack and Russell Goldsmith
Daisy Helman
IHS Markit
Incyte Corporation
The Ronald & Jo Carole Lauder Foundation
The Kraft Family Foundation
Nancy & Howard Marks
Julie and Edward Minskoff
Novartis Corporation
Cynthia and Leon Polsky
Mary Jo and Brian Rogers
Francine and Jeffrey Rowbottom
Simpson Thacher & Bartlett LLP
Paul E. Singer Foundation
SkinCeuticals
The Wayne Stinchcomb Big Orange Foundation
UBS Financial Services
Vinson & Elkins LLP

$25,000-$49,999
Apollo|MidCap
Array Biopharma
Block Communications, Inc.
The Brown Foundation of Houston
Cahill Gordon & Reindel LLP
The Carlyle Group
Ernst & Young
Jennifer Corwin and Lee Grinberg
Guggenheim Partners
Hellman & Friedman LLC
Immunocore
Johnson & Johnson
J.P. Morgan Chase & Co.

American Industrial Partners
Ares Management LLC
Bank of America Merrill Lynch
Susan and Evan Bayh
Carole Black
Blackstone Group LP
BMO Capital Markets
Celldex Therapeutics, Inc.
Checkmate Pharmaceuticals
Clayton, Dubilier & Rice LLC
Cravath, Swaine & Moore LLP
Davis Polk & Wardwell
Dealogic
Debevoise & Plimpton LLP
Deutsche Bank
DermTech International
Patricia Devitt
Dynavax
Joshua Easterly
Randi and Bob Fisher
Fried, Frank, Harris, Shriver & Jacobson LLP
Genentech, Inc.
Genmab US, Inc.
Goldman Sachs & Co.
GTCR
Ashley Leeds and Christopher M. Harland
HPS Investment Partners, LLC
HSBC Bank

$10,000-$24,999
Advent International Corporation
Allen & Overy
Idera Pharmaceuticals
Jefferies Financial Group
Mark Jenkins
David L. Klein, Jr. Foundation
LCD/Standard & Poor’s
Leonard Green & Partners, LP
Loxo Oncology
LSTA/Loan Syndications & Trading Association
Mayer Brown LLP
MJX Asset Management LLC
Moody’s Investors Service Inc.
Nektar Therapeutics
New Mountain Finance Corporation
Nomura Securities
Oak Hill Advisors, LP
Oak Hill Capital Management
OncoSec Medical
Owl Rock Capital Partners LP
Paul Hastings LLP
Proskauer Rose LLP
Provectus Pharmaceuticals, Inc.
Radimmune Therapeutics, Inc.
Rgenix
Ropes & Gray LLP
Royal Bank of Canada/RBC
Royalty Pharma
Jane Hartley and Ralph Schlosstein
Sigal Family Fund of the Princeton Area Community Foundation
Sony Music Entertainment
Sullivan & Cromwell LLP
Thoma Bravo
TPG Capital, LP
Van Wyck & Van Wyck
White & Case LLP
Winston & Strawn LLP
Tyler Zachem

$5,000-$9,999
M. Mark Albert
Angelo Gordon & Co.
Antares Capital LLP
Barings LLC
Birds Nest Productions
David Blitzer
Craig Bondy
Elizabeth and Christopher Butler
Castle Biosciences, Inc.
Citi
Clarion Capital Partners, LLC
Joyce and Barry Cohen
Thomas Cole
Connolly’s Irish Pub
CreditSights
CVC Capital Partners
Kirby Walker and Paul Danielsen
Kerry Dolan
Susan and Peter Evensen
Joseph Faulkner
Freedom Mortgage
Scot French
Fulcrum Financial LevFin Insights
GoldenTree Asset Management, LP
Lauren Hanrahan
Rhonda and Statton Heath Charitable Fund

Holland & Knight
William Janetschek
Joleen and Mitch Julius
KPMG LLP
Maison Ulens
Microbiology Specialists Inc.
Debbie and George Miller
Michael Michetti
The Neiman Marcus Group
Network Financial Printing, Inc.
Onex Credit Partners
Orchard First Source Asset Management, Inc.
Nadine Schiff and Fred Rosen
Shenkan Capital Management, Inc.
Stone Point Capital
Sumitomo Mitsui Banking Corporation
SunTrust Robinson Humphrey
Stephanie Teicher
Mary and Bronson van Wyck
James Walsh
Warburg Pincus LLC
Claude Wasserstein
WindMIL Therapeutics
Edward Wolf
Vivian and James Zelter

$1,000-$4,999
Michael Abatemarco
Allure
Luisa Angelini
Lidia and Brandon Barniea
James Bonetti
Tripp Brockway

Michael Milken at the 2019 Leveraged Finance Fights Melanoma event
Vanessa Brown
CapitalOne Bank
Judith Cohen
Steve Curwin
The Geaton and Joann Decezaris Family Foundation, Inc.
Peggy and Millard Drexler Foundation
Bulent and Oya Eczacibasi
El Roble Azul Foundation
Figue
First Aid Beauty
Rondi and David Frieder
Robert Fullerton
GE Foundation
Erika Glazer

Cynthia and Mark Goodman
Dev Gopalan
Jeffrey Greenip
Mary and Meyer Grinberg
David Harvey
Gayle and Scott Hoffer
IBM Employee Services Center
Bruce Jackson
Gloria Jackson
Walter Jackson
Philip Jameson
Jones Day
Joseph Kieffer
David Liptak
John Maldonado

Jonathan Marotta
Suzy, Nancy and Carol Minkoff Charitable Fund
Grant Moyer
George Mueller
Marion and David Mussafer
New Enterprise Associates
Barbara Pettit
Christopher Pike
Jennifer Porterfield
Ken Prince
Derrick Queen
Vered Rabia
Rosalind Resnick
Anita and David Robbio
Christopher Rulon-Miller
Matthew Savino
Schneid Family

David Scudellari
Shethar Foundation
Susan Drossman and Adam Sokoloff
Starboard Value LP
Amanda Taitz
Laura and Fred Tanne
William Thompson
Timothy Walsh
Brian Wolfe
Alfred Xue

The list of donors contributing up to $999 in 2018 is on the MRA website.

Click Here to View
# STATEMENT OF FINANCIAL POSITION

## ASSETS

<table>
<thead>
<tr>
<th></th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents</td>
<td>$13,299,317</td>
<td>$14,121,998</td>
</tr>
<tr>
<td>Investments</td>
<td>10,187,383</td>
<td>10,219,557</td>
</tr>
<tr>
<td>Contributions Receivable (Net)</td>
<td>13,734,662</td>
<td>18,009,454</td>
</tr>
<tr>
<td>Prepaid Expenses and Other Assets</td>
<td>51,403</td>
<td>75,043</td>
</tr>
<tr>
<td><strong>TOTAL ASSETS</strong></td>
<td><strong>$37,272,765</strong></td>
<td><strong>$42,426,052</strong></td>
</tr>
</tbody>
</table>

## LIABILITIES

<table>
<thead>
<tr>
<th></th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts Payable</td>
<td>$65,314</td>
<td>$137,004</td>
</tr>
<tr>
<td>Grants Payable (Net)</td>
<td>17,294,177</td>
<td>11,848,581</td>
</tr>
<tr>
<td>Deferred Revenue</td>
<td>280,000</td>
<td>57,240</td>
</tr>
<tr>
<td>Due to Affiliate</td>
<td>109,159</td>
<td>16,744</td>
</tr>
<tr>
<td><strong>TOTAL LIABILITIES</strong></td>
<td><strong>17,748,650</strong></td>
<td><strong>12,059,569</strong></td>
</tr>
</tbody>
</table>

## NET ASSETS

<table>
<thead>
<tr>
<th></th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>$5,789,453</td>
<td>$12,357,029</td>
</tr>
<tr>
<td>Temporarily Restricted</td>
<td>13,734,662</td>
<td>18,009,454</td>
</tr>
<tr>
<td><strong>TOTAL NET ASSETS</strong></td>
<td><strong>19,524,115</strong></td>
<td><strong>30,366,483</strong></td>
</tr>
</tbody>
</table>

**TOTAL LIABILITIES AND NET ASSETS**

<table>
<thead>
<tr>
<th></th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>$37,272,765</strong></td>
<td><strong>$42,426,052</strong></td>
</tr>
</tbody>
</table>

STATEMENT OF ACTIVITIES

REVENUE & EXPENSE STATEMENT

REVENUE

<table>
<thead>
<tr>
<th>Description</th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions (Collectible Net)</td>
<td>$2,895,365</td>
<td>$2,841,125</td>
</tr>
<tr>
<td>Special Events (Net)</td>
<td>$2,038,435</td>
<td>$20,832,080</td>
</tr>
<tr>
<td>Sponsorship</td>
<td>$514,710</td>
<td>$455,000</td>
</tr>
<tr>
<td>Interest/Investment</td>
<td>$114,094</td>
<td>$291,322</td>
</tr>
<tr>
<td>Other Income</td>
<td>—</td>
<td>$21,100</td>
</tr>
<tr>
<td><strong>TOTAL REVENUES</strong></td>
<td><strong>$5,562,604</strong></td>
<td><strong>$24,582,963</strong></td>
</tr>
</tbody>
</table>

EXPENSES:

<table>
<thead>
<tr>
<th>Description</th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Grants</td>
<td>$13,525,762</td>
<td>$9,079,591</td>
</tr>
<tr>
<td>Personnel Costs</td>
<td>$1,588,653</td>
<td>$1,412,640</td>
</tr>
<tr>
<td>Travel &amp; Entertainment</td>
<td>$350,487</td>
<td>$309,836</td>
</tr>
<tr>
<td>Other Expenses</td>
<td>$354,131</td>
<td>$306,803</td>
</tr>
<tr>
<td>Meetings &amp; Conferences</td>
<td>$277,208</td>
<td>$251,405</td>
</tr>
<tr>
<td>Professional Fees</td>
<td>$163,814</td>
<td>$210,636</td>
</tr>
<tr>
<td>Occupancy</td>
<td>$144,917</td>
<td>$138,887</td>
</tr>
<tr>
<td><strong>TOTAL EXPENSES:</strong></td>
<td><strong>$16,404,972</strong></td>
<td><strong>$11,709,798</strong></td>
</tr>
</tbody>
</table>

**NET INCOME/(LOSS)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Total 2018</th>
<th>Total 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NET INCOME/(LOSS)</strong></td>
<td>($10,842,368)</td>
<td>$12,873,165</td>
</tr>
</tbody>
</table>

MRA FUNCTIONAL EXPENSES

- **Research Grants**: $13,525,762
- **Non-Grant Program Expenses**: $1,990,511
- **Management & Admin**: $346,024
- **Fundraising**: $545,225

**TOTAL PROGRAM COSTS**: $15,516,723

**NET INCOME/(LOSS)**: ($10,842,368)
MRA BOARD OF DIRECTORS*

Debra R. Black  
Co-Founder & Chair, MRA  
Broadway Producer

Leon Black  
Co-Founder, MRA  
Chairman & CEO  
Apollo Global Management, LLC

Benjamin Black  
Portfolio Manager  
Knowledge Universe

Margaret Anderson  
Secretary, MRA Board  
Managing Director, Deloitte

Maria Bell  
Television Writer  
Television Producer

Ellen Davis  
Principal  
Makana Beverages

Amanda Eilian  
Co-Founder and President  
Videolicious, Inc.

Jason Daniel Federici  
Art Director and Designer

Jami Gertz  
Television and Film Actress

Daisy Helman  
CEO and Founder  
Garden Collage

Susan Hess  
Vice Chairman  
Whitney Museum

Denise Kellen  
Patient Advocate  
Philanthropist

Michael Klowden  
CEO  
Milken Institute

Nancy Marks  
Chairman, Sies Marjan

Michael Milken  
Chair, Milken Institute  
Founder & Chair, FasterCures & Prostate Cancer Foundation

Richard Ressler  
Founder & President of Orchard Capital Corporation and CIM Group

Mary Jo Rogers  
Melanoma Patient  
Melanoma Advocate

Jeffrey Rowbottom  
Partner  
Iron Park Capital

Elliott Sigal, MD, PhD  
Senior Advisor/Venture Partner  
New Enterprise Associates

Jonathan W. Simons, MD  
President and CEO  
Prostate Cancer Foundation

Jonathan Sokoloff  
Managing Partner  
Leonard Green & Partners, LP

Elizabeth Stanton  
President  
The Elizabeth and Oliver Stanton Foundation

Suzanne L. Topalian, MD  
Professor, Surgery and Oncology  
Johns Hopkins Medicine

*All organizational affiliations and titles are listed for identification purposes only. All individuals serve in their personal capacity only and not as a representative of their employer.
MRA STAFF

Michael Kaplan
President and CEO

Marc Hurlbert
Chief Science Officer

Kristen Mueller
Scientific Program Director

Cody Barnett
Director of Communications

Carolyn Ricci
Director of Development

Janine Rauscher
Associate Director, Development & Information Management

Tasheema Prince
Scientific Program Manager

Subira Brown
Development Associate

Tyler Brown
Senior Associate, Patient Engagement & Operations

DERMATOLOGY COUNCIL*

Jean Bolognia, MD
Professor of Dermatology
Vice Chair, Clinical Affairs
Yale University

Mark Davis, MD
Chair, Dermatology
Mayo Clinic

Richard Granstein, MD
Chairman, Department of Dermatology
Weill Cornell Medical College

Allan Halpern, MD
Chief Attending
Memorial Sloan-Kettering Cancer Center

Roger Lo, MD, PhD
Professor of Medicine/Dermatology
Associate Chief of Dermatology
David Geffen School of Medicine at UCLA

David Polsky, MD, PhD
Director, Pigmented Lesion Clinic
New York University School of Medicine

Susan Swetter, MD
Stanford University
Professor, Dermatology

*All organizational affiliations and titles are listed for identification purposes only. All individuals serve in their personal capacity only and not as a representative of their employer.
**SCIENTIFIC ADVISORY PANEL**

- **Suzanne Topalian, MD – Chair**
  Professor Surgery and Oncology,
  Johns Hopkins Medicine
  Director, Melanoma Program, Sidney Kimmel Comprehensive Cancer Center
  Associate Director, Bloomberg–Kimmel Inst. for Cancer Immunotherapy

- **Jeff Allen**
  President & CEO
  Friends of Cancer Research

- **James Allison, PhD**
  Chairman, Department of Immunology;
  Director, Immunotherapy Platform;
  Deputy Director, David H. Koch Center for Applied Research of Genitourinary Cancers
  University of Texas, MD Anderson Cancer Center

- **Boris Bastian, MD**
  Clinical Professor, Department Dermatology
  University of California, San Francisco

- **Gideon Bollag, PhD**
  Chief Executive Officer
  Plexxikon, Inc.

- **Glenn Dranoff, MD**
  Global Head of Exploratory Immuno-Oncology
  Novartis Institutes for BioMedical Research

- **Gregory Friberg, MD**
  Vice President & Therapeutic Area Head
  Hematology/Oncology Global Development
  Amgen Inc.

- **Levi Garraway**
  Senior Vice President
  Global Development and Medical Affairs
  Lilly Oncology

- **Allan C. Halpern, MD**
  Chief, Dermatology Service,
  Memorial Sloan Kettering Cancer Center

- **Reid Huber, PhD**
  Executive Vice President, Chief Scientific Officer
  Incyte Corporation

- **Howard Kaufman**
  Chief Medical Officer, Replimune

- **Nageatte Ibrahim, MD**
  Executive Director, Melanoma Program
  Development Lead
  Merck Research Laboratories

- **Jeffrey Legos, PhD**
  Senior Vice President, Global Program Head
  Novartis Pharmaceuticals Corporation

- **Richard Marais, PhD, FMedSci**
  Director
  Cancer Research UK Manchester Institute

- **Grant McArthur, PhD, FRACP**
  Head, Molecular Oncology Laboratory,
  Consultant Medical Oncologist, Senior Principal Research Fellow (NHMRC), Group Leader, Senior Faculty
  Peter MacCallum Cancer Center

*All organizational affiliations and titles are listed for identification purposes only. All individuals serve in their personal capacity only and not as a representative of their employer.
Ira Mellman, PhD
Vice President of Research Oncology
Genentech

Fouad Namouni, MD
Senior VP, Head of Oncology Development
Bristol-Myers Squibb Company

Caroline Robert, MD, PhD
Professor of Dermatology
Head of the Dermatology Unit
Institute Gustave Roussy

Neal Rosen, MD, PhD
Enid A. Haupt Chair in Medical Oncology
Memorial Sloan Kettering Cancer Center

Steven Rosenberg, MD
Chief, Surgery Branch
National Cancer Institute

David Solit, MD
Director, Marie-Josée & Henry R. Kravis Center for Molecular Oncology
Memorial Sloan Kettering Cancer Center

Michael Weber, PhD
Director, Cancer Center,
University of Virginia

Dr. Janis Taube at the 2019 MRA Scientific Retreat
MEDICAL ADVISORY PANEL* 

Dermatology

David Fisher, MD, PhD
Edward Wigglesworth Professor &
Chairman Dept of Dermatology
Director, Melanoma Program MGH
Cancer Center
Director, Cutaneous Biology
Research Center
Massachusetts General Hospital
Harvard Medical School

Sancy Leachman, MD, PhD
Director, Melanoma Research Program,
Professor and Chair of Dermatology
Knight Cancer Institute
Oregon Health Science University

Roger Lo, MD, PhD
Professor, Departments of Medicine &
Molecular and Medical Pharmacology,
UCLA David Geffen School of Medicine and
Jonsson Comprehensive Cancer Center

David Polsky, MD, PhD
Alfred W. Kopf, MD Professor of Dermatologic
Oncology, Ronald O. Perelman Department of
Dermatology
Professor, Department of Pathology
Director of Pigmented Lesion Service
NYU Langone Medical Center
Joan and Joel Smilow Research Center

Susan Swetter, MD
Professor of Dermatology
Director, Pigmented Lesion &
Melanoma Program
Stanford University Medical Center and
Cancer Institute

Medical Oncology

Michael Atkins, MD - Chair
Deputy Director, Georgetown-Lombardi
Cancer Center, Georgetown University

Paul Chapman, MD
Attending Physician, Melanoma / Sarcoma
service, Memorial Sloan-Kettering Cancer
Center
Professor of Medicine, Weill Medical
College of Cornell University

Keith Flaherty, MD
Director, Henri and Belinda Termeer Center for
Targeted Therapies
Richard Saltonstall Chair in Oncology
Massachusetts General Hospital Cancer
Center

Thomas Gajewski, MD, PhD
Professor, Departments of Pathology and
Medicine, University of Chicago

F. Stephen Hodi, MD
Director, Melanoma Center
Director, Center for Immuno-Oncology
Institute Physician
Sharon Crowley Martin Chair in Melanoma
Professor of Medicine, Harvard Medical
School
Dana-Farber Cancer Center

*All organizational affiliations and titles are listed for identification purposes only. All individuals serve in their personal capacity only and not as a representative of their employer.
Patrick Hwu, MD
Division Head, Division of Cancer Medicine, Department Chair, Department of Melanoma Medical Oncology
Co-Director, Center for Cancer Immunology Research
Distinguished Chair, Sheikh Mohammed Bin Zayed Al Nahyan, The University of Texas MD Anderson Cancer Center

Kim Margolin, MD
Clinical Professor, City of Hope National Medical Center

Antoni Ribas, MD, PhD
Professor of Medicine, Surgery, and Professor of Molecular and Medical Pharmacology;
Director of the Tumor Immunology Program at the Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles

Lynn Schuchter, MD
C. Willard Robinson Professor of Hematology-Oncology
Attending Physician, Hospital of the University of Pennsylvania
Program Leader: Melanoma Program, Abramson Cancer Center of the University of Pennsylvania
Division Chief, Hematology-Oncology, University of Pennsylvania

Jeffrey S. Weber, MD, PhD
Deputy Director and Head, Experimental Therapeutics, Laura and Isaac Perlmutter Cancer Center
Professor of Medicine at the NYU Langone Medical Center

Jedd Wolchok, MD, PhD
Lloyd J. Old/Virginia and Daniel K. Ludwig Chair in Clinical Investigation; Chief, Melanoma & Immunotherapeutics Service; Director, Parker Institute for Cancer Immunotherapy at MSK; Associate Director, Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center

Suzanne Topalian, MD
Professor, Surgery and Oncology, Johns Hopkins Medicine
Director, Melanoma Program, Kimmel Cancer Center
Associate Director, Bloomberg–Kimmel Institute for Cancer Immunotherapy

Jeffrey Gershenwald, MD
Professor, Department of Surgical Oncology, Division of Surgery, University of Texas, MD Anderson Cancer Center

Charlotte Ariyan, MD
Associate Attending, Memorial Sloan Kettering Cancer Center

Dr. Michael Atkins at the 2019 MRA Scientific Retreat
GRANT REVIEW COMMITTEE*

Dr. Kim Margolin at the 2019 MRA Scientific Retreat

Jennifer Wargo, MD – Chair
Assistant Professor,
Department of Surgical Oncology,
Division of Surgery,
The University of Texas MD Anderson
Cancer Center

Marcus Bosenberg, MD, PhD – Co Chair
Professor of Dermatology and Pathology,
Yale School of Medicine

Ana Carrizosa Anderson, PhD
Associate Professor of Neurology
Associate Member, Broad Institute
Harvard Medical School and Brigham and
Women’s Hospital

Andrew Aplin, PhD
The Kalbach-Newton Professor in Cancer
Research
Associate Director for Basic Research
Program Leader, Cancer Cell Biology & Signaling
NCI-designated Sidney Kimmel Cancer Center
Professor, Department of Cancer Biology
Thomas Jefferson University

Boris Bastian, MD, PhD
Leader, Cutaneous Oncology
University of California, San Francisco

Nina Bhardwaj, MD, PhD
Director, Immunotherapy Program
Ichan School of Medicine at Mount Sinai

Paul Chapman, MD
Attending Physician, Melanoma and
Immunotherapeutics Service
Department of Medicine, Memorial Sloan-Kettering Cancer Center
Professor of Medicine, Weill Cornell Medical College

Tanja de Gruijl, PhD
Professor, Translational Tumor Immunology and
Head Immunotherapy Lab
Amsterdam University Medical Centers, Vrije
Universiteit, Amsterdam

David Fisher, MD, PhD
Edward Wigglesworth Professor & Chairman
Dept. of Dermatology
Director, Melanoma Program MGH Cancer Center
Director, Cutaneous Biology Research Center
Massachusetts General Hospital
Harvard Medical School

Keith Flaherty, MD
Director, Henri and Belinda Termeer Center for
Targeted Therapies
Richard Saltonstall Chair in Oncology
Massachusetts General Hospital Cancer Center

Thomas Gajewski, MD, PhD
Professor,
Departments of Pathology and Medicine
University of Chicago

Jeffrey Gershenwald, MD
Professor,
The University of Texas MD Anderson
Cancer Center

*All organizational affiliations and titles are listed for identification purposes only. All individuals serve in their personal capacity only and not as a representative of their employer.
J. William Harbour, MD  
Professor and Dr. Mark J. Daily Endowed Chair  
Vice Chairman for Translational Research  
Director, Ocular Oncology Service  
Bascom Palmer Eye Institute  
Associate Director for Basic Research  
Sylvester Comprehensive Cancer Center  
University of Miami Miller School of Medicine

Meenhard Herlyn, DVM, DSc  
Professor and Program Leader, Molecular and Cellular Oncogenesis Program, Wistar Institute

Thomas Hornyak, MD, PhD  
Chief, Dermatology, VA Maryland Health Care System; Associate Professor of Dermatology and Biochemistry and Molecular Biology  
University of Maryland School of Medicine

Roger Lo, MD, PhD  
Director, Melanoma Clinic in Dermatology; Associate Professor, Department of Medicine, Dermatology; Associate Professor, Department of Molecular and Medical Pharmacology  
University of California, Los Angeles, School of Medicine

Michal Lotem, MD  
Head, Center for Melanoma and Cancer Immunotherapy  
Sharett Institute of Oncology  
Hadassah Hebrew University Medical Center

Kim Margolin, MD  
Department of Medical Oncology  
City of Hope National Medical Center

Martin McMahon PhD Chair  
Cumming-President Professor of Cancer Biology, Department of Dermatology & Senior Director for Preclinical Translation  
Huntsman Cancer Institute, University of Utah

Glenn Merlino, PhD  
Scientific Director for Basic Research, Center for Cancer Research, NCI, NIH

Drew Pardoll, MD, PhD  
Co-Director, Cancer Immunology and Hematopoiesis Program, Professor of Oncology, Medicine, Pathology, and Molecular Biology and Genetics, John Hopkins University School of Medicine

Antoni Ribas MD, PhD  
Professor, Department of Medicine, University of California, Los Angeles

Caroline Robert, MD, PhD  
Professor of Dermatology  
Head of the Dermatology Unit  
Institute Gustave Roussy

Jonathan Simons, MD  
CEO and President, David H. Koch Chair, Prostate Cancer Foundation

Dr. Drew Pardoll at the 2019 MRA Scientific Retreat
Craig Slingluff, MD
Joseph Helms Farrow Professor of Surgery
Division of Surgical Oncology
Vice-Chair for Research
Director, Human Immune Therapy Center
University of Virginia

Marisol Soengas, PhD
Professor
Centro Nacional de Invesitigaciones Oncologicas

David Solit, MD
Director, Marie-Josée & Henry R. Kravis Center for Molecular Oncology
Memorial Sloan Kettering Cancer Center

Alan Spatz, MD
Professor, Jewish General Hospital/Lady Davis Institute for Medical Research

Susan Swetter, MD
Stanford University Medical Center and Cancer Institute

Suzanne Topalian, MD
Professor, Surgery and Oncology, Johns Hopkins Medicine
Director, Melanoma Program, Kimmel Cancer Center
Associate Director, Bloomberg-Kimmel Institute for Cancer Immunotherapy

Jeffrey Weber, MD, PhD
Deputy Director and Head, Experimental Therapeutics, Laura and Isaac Perlmutter Cancer Center
Professor of Medicine
NYU Langone Medical Center

Ashani Weeraratna, PhD
E.V. McCollum Chair of Biochemistry and Molecular Biology
Johns Hopkins Bloomberg School of Public Health and Bloomberg Distinguished Professor of Cancer Biology,
Co-Program Leader, Cancer Invasion and Metastasis, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine

Xu Wu, PhD
Associate Professor
Cutaneous Biology Research Center
Massachusetts General Hospital
Harvard Medical School

Kai Wucherpfennig, MD, PhD
Chair, Professor of Microbiology and Immunobiology
Chair, Cancer Immunology & Virology
Dana-Farber Cancer Institute

Dancing with the Stars Pro Witney Carson at the 2019 Leveraged Finance Fights Melanoma event

Dr. Patricia Keegan and Daisy Helman at the 2019 MRA Scientific Retreat
2018 HONOR AND MEMORIALS

The following have been memorialized with gifts to MRA:

Sarah Allen
Sam H. Barber
Rick Becker
Carina Benavides
Dennis Biddinger
Pamela J. Brothers
Thomas P. Brown
Terence Burr
Robert Burton
Jessica Cahn
Jack Calderon
Mitchell Carroll
Rusty Cline
James L. Creason
Duane L. Dee
Jack Downey
Cynthia Ducharme
Dick Elden
Danny Federici
Abigail Finch
Amy Foster
Geoff Gibson
Louann Gilbert
Ronald Gilbert
Deane J. Goldmann
Joan Goldmann
Douglas Hafer
Lynn Heath
Sally Hendrick
Judith A. Howard
Janice Vine Johnson
Jackie King
Sol Korval
Lisa Lais
Nehemiah Joseph Landes
Ken Lewin
Tara Miller
Dick Moran
Richard Morton
Elmer Nelson
Ronald Osborne
Thad Oviatt
Jeff Pilcicki
Nettie Ptaszek
James (Jamie) C. Robertson
Mark Samitt
Timothy Schiefelbein
Daniel Smith
Virginia Springstead
Wayne Stinchcomb
Ray Stromski
Kristen Wood Taccogna
Phil Teicher
Edward R. (Ted) Troy
Madeline Tully
Don Warters
Anita Werner

Gifts to MRA have been made in honor of the following:

Clare Bailhe
Anne E. Baldwin
Brandon Barniea
Ben Black
Debra Black
Hanneke Bonnawit
The Burke Family
Robert Burnside
Solara Calderon
Kenneth Coffey
Amanda Deis
Ellen Didion
Jamie Troil Goldfarb
Lee Grinberg and Jennifer Corwin
Scott Hoffer
Marc Hurlbert
George Kennedy
Zack Kinson
Alice LaBit
The Chairs of Leveraged Finance Fights Melanoma
Donald Lysacek
Nancy Marks
Jim Putnam and Pauline Gregoire
Derrick Queen
Bill and Helen Reinhart
Mary Jo Rogers
Kimberly Rosen
Jeffrey Rowbottom
Pam Smith
Scott Southwood
Stephanie Teicher
Lisa Patel Waller
Grace Wenzel