Advancing Melanoma Research in Times of Uncertainty

Highlights from the 2021 MRA Scientific Retreat
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Letter from Chief Science Officer and Senior Director, Scientific Program</td>
</tr>
<tr>
<td>03</td>
<td>The Melanoma Research Community Meets the Moment</td>
</tr>
<tr>
<td>05</td>
<td>Melanoma Screening Challenges and Controversies</td>
</tr>
<tr>
<td>09</td>
<td>The Next Frontier of Combination Immunotherapy: Maximizing the Benefits & Reducing Harms</td>
</tr>
<tr>
<td>13</td>
<td>Averting and Treating Immune-related Adverse Events Associated with Checkpoint Immunotherapies</td>
</tr>
<tr>
<td>16</td>
<td>Rare Melanoma Research, Patient Registries & Clinical Trials</td>
</tr>
<tr>
<td>21</td>
<td>INDUSTRY ROUNDTABLE</td>
</tr>
<tr>
<td></td>
<td>Biomarkers: What You Need to Know</td>
</tr>
<tr>
<td>25</td>
<td>Agenda</td>
</tr>
<tr>
<td>26</td>
<td>Participants</td>
</tr>
<tr>
<td>42</td>
<td>Sponsors</td>
</tr>
</tbody>
</table>
Each year, MRA takes great pleasure bringing together the melanoma research community in Washington, DC for three days of learning, conversation, and collaboration. But in 2021, due to the ongoing COVID-19 pandemic, MRA had to take a different approach. We knew bringing the community together was more important than ever, and so for the first time in our history, MRA held its annual Scientific Retreat virtually from February 22-24, 2021.

With more than 500 registered attendees, 2021 marked the largest Scientific Retreat in MRA’s history. For three days, leading researchers and clinicians from the United States and abroad, as well as senior leadership from non-profit foundations, government agencies, industry, philanthropists and other like-minded organizations gathered virtually to listen to scientific lectures and panel discussions, participate in topic-focused, small-group networking sessions, and visit virtual posters. Attendees also heard firsthand from individuals personally affected by melanoma about how grateful they are for all the advancements in treatment over the past decade and how critical it is to keep the momentum going, even in the time of COVID-19.

Scientific lectures covered a variety of topics at the leading edge of melanoma research, including novel influences on melanoma formation and progression, promising new immunotherapy drug targets to overcome treatment resistance, strategies to mitigate immune-related side effects, and the latest research and approaches for detecting melanoma early, before it spreads. A moderated panel discussion, which featured speakers from the U.S. Food and Drug Administration, the National Cancer Institute, and a large academic hospital highlighted how the COVID-19 pandemic has impacted melanoma screening and care. The panel also explored new directions in treatment strategies for patients with rare melanoma subtypes like acral, mucosal, and uveal melanoma.

Beyond the scientific sessions, the Retreat featured 38 small group networking sessions focused on topics related to melanoma prevention, detection, treatment, and survivorship, among others. Thirty-five MRA awardees presented posters across two sessions providing designated times where Retreat participants could meet with the presenters virtually to discuss the work. Finally, researchers and clinicians gathered with representatives from industry and government to discuss the current state of companion diagnostics and biomarker development for melanoma.

MRA is delighted to be able to provide a platform for sharing important research advancements and to host such critical discussions. These are vital steps towards spurring the next wave of progress so that fewer and fewer individuals will experience suffering and death due to melanoma.
The Melanoma Research Community Meets the Moment

Each year, the annual MRA Scientific Retreat brings hundreds of people from across the melanoma research ecosystem together to exchange ideas, report on scientific progress, celebrate achievements, and mourn the losses. In these ways, the 2021 Retreat was no different.

However, just as 2020 — and COVID-19 — changed all facets of life, including how we work, how our children go to school, and how we see and interact with our loved ones, the 2021 Retreat couldn’t be more different than those that came before it. For the first time in its history, out of necessity for the health and safety of all attendees, MRA’s annual gathering was held virtually.

This year — instead of flocking to Washington, DC — participants donned headsets, huddled over computers, and carefully carved out space from their daily schedules to participate. The rigor of the scientific talks and poster sessions, opportunities for meaningful networking, and willingness to report on pre-publication work was exactly what you’d expect from
an MRA event. And, without the confines of a hotel ballroom, participation flourished, almost doubling to more than 500 people — bringing even more people into the MRA community.

Participants heard from 17 patients and advocates throughout the retreat who — through the power of their stories — offered encouragement, gratitude, and reinforced the urgent need for more research, more treatments, and more hope.

Keith Tolley thanked participants for allowing him to live to see the birth of two grandchildren, the marriage of his oldest son, and to celebrate many birthdays and holidays with his family. “As a surviving stage 4 melanoma patient, I am a beneficiary of the incredible discoveries that you continue to make and the tireless work you continue to do. Because of your relentless pursuit of a cure, I have great hope that I may yet still live to see more of these special events.”

Christine Garrison spoke of her daughter Rebecca who succumbed to melanoma in 2011. “She lived for seven good years after her diagnosis. During this time, you were here lifeline. She always looked to you for a lifeline when her current treatment was failing. You came through for her many times. I know today that you are the lifeline for countless others. Thank you on behalf of us all for working hard to bring us ever more ‘Plan B’s’ and hope for a cure.”

With these searing words still fresh in their mind, participants started each day of the MRA Retreat: Meeting the moment and advancing melanoma research in truly unprecedented times.

“Because of your relentless pursuit of a cure, I have great hope that I may yet still live to see more of these special events.”

KEITH TOLLEY, MELANOMA SURVIVOR

Christine Garrison addresses all attendees during a pre-recorded video: “Thank you on behalf of us all for working hard to bring us ever more ‘Plan B’s’ and hope for a cure.”

Christine Garrison
Melanoma Advocate

Introduction
Melanoma Screening Challenges and Controversies

In recent years, the number of new technologies dermatologists use for screening moles has expanded. In many cases, this has improved the ability of clinicians to detect a melanoma that arises on the skin at its earliest stages, when it is more amenable to being cured. These technologies include three-dimensional whole-body imaging done at a doctor’s office, a method of skin-surface microscopy called dermoscopy, an innovative way to spy on moles at the microscopic level without a biopsy, and a non-invasive technique for delving into the telltale genetic changes that might indicate a mole’s shift to malignancy.

Another “sea change” in melanoma detection presented by Allan Halpern of Memorial Sloan Kettering at the 2021 MRA Scientific Retreat is the shift to digital health and the use of artificial intelligence (AI) to interpret pictures of moles. In one study, this technology has improved to the point where it exceeds the accuracy of dermatologists in detecting malignant moles. “The algorithms continue to outperform humans so there’s no question that...
technology and AI will continue to play an increasing role in early detection of melanoma," Halpern said. AI is also beginning to be used in cellphone apps in Europe to enable people to monitor their own moles by submitting pictures they take of them at a single or at multiple points in time. Software in the apps analyzes the pictures and alerts users if their moles have suspicious findings or changes requiring a more detailed look by a provider. These apps will eventually help people better assess their own moles in-between visits to the dermatologist.

These advances are worth celebrating as they have the potential to save lives, but Halpern cautions that “these technological advances we are very excited about have the risk of promoting overdiagnosis.” Potential melanoma overdiagnosis has become a “hot topic” as a recent study indicates it already is a concern. This study, published in the New England Journal of Medicine, points out while melanoma incidence has increased by a factor of six compared to 40 years ago, this increase in cases has not been accompanied by an expected equal rise in melanoma deaths. Deaths have largely remained stable except for a recent decrease due to improved melanoma treatments.

This suggests that melanoma is being over diagnosed such that more benign, dormant stages of melanoma are being detected that may not ever have developed into deadly malignancies, or that mole changes are inaccurately diagnosed as melanoma, the study authors claim. They point out that over the past decade or two, physicians have been more inclined to biopsy suspected moles at their smaller, thinner stages when they are more ambiguous and likely to be misinterpreted.

Further compounding the risk of overdiagnosis is that pathologists have lowered the threshold for what they label melanoma, one study found, perhaps due to the tendency to err on the side of caution. The end result is that many patients are having unnecessary biopsies, resulting in greater medical costs, inconvenience, and discomfort to the patient, especially if there are functional or cosmetic complications resulting from the biopsies. Unneeded biopsies also cause undue psychological stress on patients and their loved ones as the fear of cancer looms large as they wait for test results.
The risk of overdiagnosis is timely because the United States Preventive Services Task Force is about to update its recommendations for skin cancer screening. In the past, this task force found inadequate evidence to suggest the need for widespread screening for melanoma, and instead recommended it only be considered for high-risk groups, such as those with a family or personal history of melanoma, or those who have a large number of moles, or atypical moles.

“Most of us agree we need to do a better job focusing our screening and public education efforts on the segment of society at greatest risk of dying from melanoma,” Halpern said. But he pointed out there are some subgroups with a greater risk of dying from melanoma, such as men older than 50 years of age. Such high-risk groups should probably receive additional efforts in early detection.

Halpern noted children and people with skin of color have the least risk of dying from melanoma and so probably shouldn’t undergo routine screening unless they are known to have a specific risk. He also called for improving the specificity of AI and other new technologies currently being deployed to diagnose melanoma by training and testing them with images of benign lesions across all racial, ethnic and age groups.

To counter overdiagnosis of melanoma, Halpern suggested doing more watchful waiting of ambiguous macular (flat) moles and refraining from performing a biopsy unless they show concerning changes over time. He pointed out that watchful waiting is already done for early stages of prostate and papillary thyroid cancer to counter the prevalent overdiagnosis of these cancers. Finally, Halpern called on researchers to continue to develop molecular
markers that can more accurately distinguish between benign and malignant moles, as a current lack of such markers makes diagnosis of early melanoma subjective and somewhat imprecise.

Researchers, and private companies alike, are making important progress towards developing non-invasive techniques to determine if a biopsy is needed. While a dermatoscope, a handheld device that uses bright light and magnification to allow a dermatologist to view deeper layers of the skin, has been aiding the naked eye in detection for decades, more definitive non-invasive techniques are under development to help better diagnose abnormal lesions in a timely manner. Such tools include full body photography, reflectance confocal microscopy, electrical impedance spectroscopy, optical coherence tomography (OCT), fluorescence photography, non-invasive gene expression profiling, and high-frequency ultrasound.

One example of a non-invasive gene test that can help doctors and patients decide whether or not to biopsy a suspicious skin lesion is the Dermtech Pigmented Lesion Assay (PLA). The PLA is performed by your doctor by adhering an adhesive patch to the skin that collects a small sample to measure whether two genes, PRAME and LINC00518, are expressed at high levels. The PLA adhesive patch is then mailed to the diagnostic lab for testing, which can take up to 3 to 5 days, before results are returned to the doctor. Gene expression changes in PRAME and LINC can be detectable before physical changes to the skin lesion are visible. If one, or both, genes are highly expressed, the doctor can use this genomic information to determine if a biopsy is warranted.

Collectively, these diagnostic tools, when coupled with watchful waiting and AI, will help reduce overdiagnosis of melanoma.
Every general knows that the best way to successfully win a war is to deploy multiple weapons with different targets. This strategy was first used in cancer to conquer childhood leukemias with combination chemotherapy and now is being put to the test in melanoma by combining multiple checkpoint inhibitors, as well as combining checkpoint inhibitors with targeted BRAF and MEK inhibition or other agents. At MRA’s 2021 Scientific Retreat, several researchers reported from such innovative frontlines. They recounted the current thinking on combination therapy for melanoma and ways to enhance the anti-tumor immune response using promising new immune targets, as well as strategies aimed at modulating the gut microbiome.

During his MRA Scientific Retreat opening keynote lecture, 2019 Nobel Laureate William Kaelin, Jr., of Dana-Farber Cancer Institute, pointed out that many melanoma patients treated with BRAF/MEK targeted therapy initially respond, only to relapse later due to drug resistance. This resistance
stems from combining drugs that block the same target or multiple targets in the same cellular signaling pathway. This not only increases the risk of toxic reactions, but also revs up the evolutionary pressure for tumor cells to escape the effects of these drugs. Such pressure prompts molecular changes inside tumor cells that enable them to elude the effects of these drugs. Underlining the challenge clinicians and researchers face in fighting melanoma and other cancers with such drugs, Kaelin said, “If you strike at the king, you must kill him.”

To overcome such resistance, Kaelin suggested combining drugs with distinct and independent mechanisms of action. That way, “There is a low probability of any one [tumor] cell being resistant to three non-cross-resistant drugs. The trick is to make the math work for and not against you so you can potentially win,” Kaelin said.

This approach has already proven effective for kidney cancer, Kaelin noted, and is starting to be applied to melanoma. For example, early-stage trials targeting BRAF/MEK inhibition with CDK4/6 inhibitors. “Hopefully we can someday look back at kidney cancer and melanoma and be able to say that with the development of combinations, we were able to find cures for these diseases,” Kaelin concluded.

Using “Smart” Technologies to Boost Anti-Tumor Immunity

To foster more effective combination immunotherapies, a number of researchers are focusing on aspects of the immune system that work independently from those targeted by currently approved melanoma checkpoint inhibitors, such as ipilimumab, nivolumab, and pembrolizumab. Up to 50% of patients do not durably respond to these therapies, and researchers believe that by targeting additional pathways involved in an anti-tumor immune response, such combination therapy will become more effective in the long term to more patients.

One MRA-funded researcher, John Wilson of Vanderbilt University, is designing innovative nanotechnology to access a new and previously unreachable immune target within the cell. Currently approved immunotherapies use antibodies that target molecules called receptors that stick out from the surface of a cell. These receptors easily come into contact with medications circulating in the bloodstream. It is much more difficult, if not impossible, for antibodies and many other promising drug candidates to penetrate cell membranes, and access the molecules within them. These molecules include a “growing arsenal of promising intracellular therapeutic targets that have enormous potential, but require a strategy to provide open access to them,” pointed out Wilson.
To provide that access, Wilson’s lab, which has expertise in chemistry, materials science, and immune-engineering, designed smart nanoparticles (NPs) that mimic the way some viruses enter cells. The researchers designed NPs so they are engulfed by the cell membrane of tumor and immune cells. And, once inside these membranes, a change in acidity triggers the NPs to release their active drug component, where it binds with its target. When loaded with a drug cargo that can stimulate the immune system, the NPs trigger molecular signaling that causes immune cells to activate and expand in number, so that they infiltrate into and kill tumor cells.

Wilson found that their approach resulted in significant therapeutic benefit in multiple mouse models, and that his NPs greatly enhanced anti-tumor immune responses when combined with checkpoint immunotherapy. This experimental combination inflamed a previously dormant immune response to the tumors, significantly boosting complete response rates in a mouse model of melanoma and increasing survival without causing any serious side effects. Wilson also coupled his NP technology to personalized cancer vaccines aimed at stimulating an anti-tumor immune response. The particles were small enough that they easily penetrated cells in the lymph nodes, where they enhanced the immune response there, and showed good efficacy in a mouse model of melanoma when combined with checkpoint immunotherapy. “Our smart NPs offer a platform for cancer vaccine delivery and have a number of other potential advantages as a drug carrier platform that we are actively exploring,” Wilson concluded.

The Scoop is in the Poop

Perhaps, a less technical solution to improving responses to checkpoint inhibitors may be to alter the microbes in our gut, Jennifer Wargo of University of Texas MD Anderson Cancer Center reported. She noted these microbes, and the foreign proteins they produce, stimulate the immune system to better kill tumors. She found that the more diverse gut microbes are in a patient, including those with melanoma, the better their response to checkpoint immunotherapy. Having certain types of microbes in the gut were also linked to better responses in melanoma patients treated with checkpoint immunotherapy. “The scoop is in the poop,” she said, adding, “You are what you eat!”

But even those patients with favorable microbes in their gut responded better to treatment when they were also on a high fiber diet. “It’s not enough to have a good microbiome signature, but you also have to feed it the right things,” Wargo stressed. She found that eating a high-fiber diet was
linked to greater progression-free survival in melanoma patients treated with checkpoint immunotherapy. Mouse studies then suggested that the greater responses and survival seen in patients with a high fiber diet was due to heightened activation of immune cells. This boost in immune activity can happen in a remarkably short period of time in response to changes in diet. Wargo is currently working with other investigators at MD Anderson Cancer Center (Dr. Jennifer McQuade and Dr. Carrie Daniel-MacDougall) to interrogate the impact of dietary intervention with fiber and other strategies in patients with melanoma (NCT03950635).

Building on Wargo’s findings, researchers recently experimented with transplanting stool from melanoma patients who responded to checkpoint immunotherapy into patients with metastatic melanoma in which the treatment was unsuccessful — a treatment called fecal microbiome transplantation (FMT). Wargo collaborated in one study in which clinical responses were observed in three of ten patients treated with FMT followed by anti-PD1 immunotherapy. In another study published at the same time, six of 15 patients derived clinical benefit. These results suggest that FMTs may modulate the gut microbiota in such a way as to allow patients who previously did not respond to benefit from checkpoint immunotherapy.

FMTs might also reduce certain side effects, what researchers call adverse reactions, to checkpoint immunotherapies. When patients undergoing immunotherapy developed the all-too common side effect colitis, and were treated with FMTs from healthy donors, the colitis resolved, even though it previously did not respond to steroids or other drugs intended to suppress it, Wargo reported.

Given the role that microbes play in shaping the response to cancer immunotherapies, Wargo worried that antibiotics might hamper that response. Her collaborator Dr. Laurence Zitvogel found that to be true for a number of lung cancer patients given antibiotics prior to being treated. “Those patients receiving antibiotics had dramatically worse response to therapy and worse survival,” Wargo said. She is pursuing a clinical study to further examine these preliminary results.

“There’s still a tremendous amount to be learned, but the future is looking quite bright,” Wargo concluded.
he first ever immune checkpoint inhibitor was approved by the Food & Drug Administration (FDA) in 2011 with an indication for treating metastatic melanoma. That approval was built upon ground-breaking research by Jim Allison, MRA Scientific Advisory Panel member and 2018 Nobel Laureate. Since then, additional immune checkpoint therapies have been approved for melanoma. Indeed, checkpoint inhibitors have not only dramatically improved health outcomes in melanoma, but are now being used to treat over a dozen different cancers.

Checkpoint inhibitors are therapies that empower the immune system to kill cancer cells. FDA-approved checkpoint immunotherapies block specific proteins on both immune cells (PD1, CTLA4) and sometimes the tumor (PDL1) that normally act as “off” switches for the immune system. This then releases the breaks on immune cells, allowing them to kill tumor cells. While this approach has yielded dramatic results in resolving numerous cancers, sometimes immune-related adverse events (irAE) can also occur as a result of the immune system attacking healthy tissues. Such autoimmune reactions can hamper patients’ quality of life, can limit the effectiveness of the treatments by requiring treatment discontinuation, and in rare instances can be fatal.

To help overcome this challenge, MRA has issued a number of research grants, including some in partnership with the American Cancer Society (ACS) and the Society for Immunotherapy of Cancer (SITC), to support an array of approaches. Some are exploring what causes these severe adverse reactions and treatments that might prevent or reverse them. Others are devising new experimental drugs that have the same tumor-killing effects as approved therapies, but without the
autoimmune side effects. Another group is searching for molecular markers that can predict which patients are more likely to develop adverse reactions to currently approved immunotherapies, which would help doctors select the best possible treatment for each patient. These investigators reported on their exciting findings at the MRA 2021 Scientific Retreat.

Treating Colitis Among Patients Receiving Checkpoint Immunotherapy

Kai Wucherpfennig of Dana-Farber Cancer Institute and his colleagues used their MRA-American Cancer Society Team Science award to explore what goes awry in melanoma patients who develop colitis after being treated with checkpoint inhibitors. Colitis, inflammation of the colon that causes severe diarrhea, is a common irAE affecting up to 25% of patients receiving checkpoint immunotherapy.

When Wucherpfennig compared colon tissue samples of patients who developed colitis to those being treated with the same therapies who did not develop colitis, he found key molecular differences. These changes included an increase in a protein called tumor necrosis factor (TNF) in those with colitis, suggesting that a drug already on the market that targets this factor (infliximab) might alleviate this complication. Team member Michael Dougan, of Mass General, initiated a clinical trial that opened in August 2020 to test this possibility (NCT04305145). Wucherpfennig noted that although his findings are specific to the colitis, some of the molecular changes he observed are likely to be relevant for other irAEs affecting the skin, lungs, and other tissues that frequently interact with microbes in the environment.

The Next Generation of CTLA4 Checkpoint Immunotherapies

Pan Zheng, formerly of University of Maryland, Baltimore, and founder of the biotech companies OncolImmune and OncoC4, is hoping to avoid autoimmune side effects with next generation anti-CTLA-4 antibodies that are being developed.

“Our findings suggest autoimmune disease is not necessarily the price for cancer immunity.”

PAN ZHENG
tested in the clinic. Her studies in mice found some antibodies targeting the protein CTLA-4 were able to effectively kill melanoma tumors without triggering an autoimmune reaction, unlike the current CTLA-4 targeted therapy (ipilimumab). She and her team hope that these alternative antibodies could serve as a second generation CTLA-4 therapy and would allow patients to experience the tumor-killing effects of the therapy while minimizing the irAEs.

Zheng then investigated why this was the case and found that CTLA4 protein bound to ipilimumab was broken down in immune cells, which reduced the amount of CTLA4 expressed on the surface of these cells. In contrast, the new antibody Zheng developed maintained the level of CTLA4 on the cell surface. In the case of Zheng’s antibody, this difference allowed the mice to better keep autoimmune reactions at bay. “Our findings suggest autoimmune disease is not necessarily the price for cancer immunity,” Zheng said. “You can have an anti-tumor effect without immune-related adverse events.”

With the support of a National Cancer Institute small business innovation award, Zheng is currently testing one of these antibodies (ONC-392) in a small number of cancer patients either alone, or in combination with pembrolizumab, to determine its safety and optimal dosing for future clinical trials (NCT04140526).

Predicting Patients Most Likely to Develop Serious Reactions

Another approach to avoiding serious autoimmune reactions of cancer immunotherapies is to predict those patients who are more likely to develop them. MRA-SITC Young Investigator Shaheen Khan of UT Southwestern and her colleagues have discovered molecular markers that show promise for identifying these patients. Certain protein levels were increased in blood samples taken from cancer patients, including patients with melanoma, who experienced autoimmune reactions to checkpoint immunotherapy compared to those that did not. If these findings are validated in future studies, clinicians could use them to help inform treatment decisions and to identify irAEs in their earliest stages, when they may be more easily treated.

The researchers also developed mice who are prone to autoimmune disease as a model for studying irAEs, and found one of the proteins detected in cancer patients who develop autoimmune reactions was also elevated in the autoimmune-prone mice. Studies in these mice might suggest ways to prevent the autoimmune reactions from occurring in patients altogether. “We hope our findings may ultimately help customize therapy, expand the use of immunotherapy, and reduce toxicities in cancer patients,” Khan noted in a poster session. □

“We hope our findings may ultimately help customize therapy, expand the use of immunotherapy, and reduce toxicities in cancer patients.”

SHAHEEN KHAN
Despite the tremendous progress made in the last decade in treating melanoma, approximately one third of patients don’t benefit from currently approved therapies. This includes the majority of people with rare forms of melanoma — melanomas that develop in the eye, nailbeds, palms, soles of the feet, and various mucosal membranes. Patients facing these subtypes tend not to respond as well to current treatments as patients with cutaneous melanomas that arise on sun-exposed skin. But as investigators continue to chip away at understanding what causes these melanomas and how they differ from UV-driven cutaneous melanomas, the hope is the better understanding they reap will be sown into improved treatments for these patients. Researchers explored both the challenges and the opportunities for research on rare melanomas at the 2021 MRA Scientific Retreat.
New Insights Into the Genetics of Acrall Melanoma

Keiran Smalley of H. Lee Moffitt Cancer Center and Research Institute and his MRA-funded team hope to find a genetic ‘smoking gun’ of what causes acral melanoma, a rare subtype of melanoma that develops on the palms, soles of feet, or under finger or toe nails, and comprises about two to three percent of all melanomas. The researchers assumed that, like many cutaneous melanomas, acral melanomas evolve from moles whose growth goes awry due to a series of specific genetic flaws. But this didn’t prove to be so for most of the tissues they analyzed when the researchers genetically compared benign moles from acral sites (feet, hands) to that of acral melanoma tumors. “This surprised us because it suggests it is unlikely that acral nevi [moles] are likely to be the precursors for the majority of acral melanomas,” Smalley said.

Digging deeper, they then mapped out the genetic landscapes of nine acral melanoma samples and found tremendous variability in the genetic material and the ways in which cell functions were altered. Unfortunately, no distinctive genetic signature was found among the samples that could provide a specific target for a drug that might be effective for patients with this rare melanoma. However, the researchers did find a group of genes with altered activity shared among most of the samples. The researchers also noted fewer and less active immune cells in the acral melanoma tumor samples compared to samples from cutaneous melanoma. This suggests that acral melanoma is less likely to spark an immune response and may explain why many patients with this subtype often do not respond to checkpoint immunotherapy, Smalley noted.

Titia de Lange of Rockefeller University, Marcin Imielinski of Weill Cornell, and their research team also found a tremendous amount of variability in the genetic landscape of the acral melanoma samples they studied. Many of these genetic alterations were due to major disruptions in genetic material, akin to typhoons creating piles of genomic wreckage, which break up the chromosomes and reattach the genes on them in new ways. These genetic disruptions are quite different from the smaller number of consistent and more pinpoint genetic changes often seen in cutaneous melanoma on sun-exposed skin. But because of the jumbling and multiplication of genetic material that often occurs after these chromosomal catastrophes, they likely trigger production of new proteins (antigens). The immune system can recognize some of...
these new tumor antigens and attack the cells that have them when stimulated by checkpoint immunotherapy, the researchers speculate. They suggest that molecular markers for these types of chromosomal disruptions, if present in patients’ tumors, might indicate whether they are likely to respond to such treatments.

UV-Driven Melanomas Extend Beyond the Skin

Richard Marais of the Cancer Research UK Manchester Institute reported on a new discovery that suggests that a subgroup of mucosal melanoma patients could respond to checkpoint immunotherapies or targeted therapies. Most mucosal melanomas arise in areas of the body not exposed to the sun, so lack the telltale genetic changes caused by ultraviolet radiation (UVR) induced DNA damage that are thought to contribute to responsiveness of these melanomas to checkpoint blockade. Mucosal melanomas are also not generally considered to be eligible for BRAF plus MEK inhibitors. However, Marais has found that melanomas arising in the mucosal membrane that covers the eye and lines the inside of eyelids have the distinctive signature common to sun-induced common cutaneous melanoma. These mucosal melanomas also had a high mutation burden and a high incidence of BRAF mutations, suggesting that they are likely to respond to the therapies approved for common cutaneous melanoma. Quoting Nick Hayward’s data, Marais noted that uveal melanomas arising on the iris also bear the telltale genetic signature of sun-induced DNA damage, suggesting that these melanomas may also respond to checkpoint immunotherapies.

“This makes us start to think about basic concepts in how melanoma is driven,” Marais said, pointing out that the data suggests that melanoma is driven by distinct processes in different parts of the body, but that UVR imprints additional events over the baseline processes to accelerate melanoma development. “We need to apply these findings to develop new treatments for rare melanomas, because responses are driven by the underlying genetics rather than by the tissue of origin” Marais noted, concluding that these findings reinforce public health messages about the importance of protecting the eyes from UVR.
Recognizing more research is needed to fully understand rare melanomas and how best to treat them, the MRA will be launching the RARE Registry for patients with acral and mucosal melanoma in 2021, while the Melanoma Research Foundation will launch a separate registry in 2021 to focus on patient experiences with ocular melanoma. The MRA RARE Registry will provide a centralized portal for patients with mucosal or acral melanomas to enter their medical data, their risk factors for melanoma, and information about their quality of life. The registry will also collect other nonmedical information that can help inform decisions for melanoma researchers, clinicians, policymakers, and funders. Maryam Asgari of Massachusetts General Hospital and Co-Principal Investigator to MRA’s registry, reported at the “No Patient Left Behind” panel discussion on the last day of the retreat. In addition, some patients whose data are part of the MRA registry will be offered a genomic analysis of their tumors free of charge. This analysis can show genetic changes during and after their treatments, which should help researchers understand why certain treatments stop working over time in some patients.

MRA’s soon-to-be-launched registry is being developed collaboratively with patients, researchers, and care providers. Patients and loved ones helped drive the design process and selected the research questions they wanted the registry to help answer. “We really put the patients in the driver’s seat when it came to asking what do you want to know about your tumor,” Asgari said. Researchers also identified gaps in the current knowledge about rare melanomas and what questions in the registry might help close those gaps, she added. Asgari noted that the two melanoma registries will be a great conduit to connect patients with rare melanomas to clinical trials. Patients are asked if they are willing to participate in such trials and researchers conducting

“We really put the patients in the driver’s seat when it came to asking what do you want to know about your tumor?”

MARYAM ASGARI
those trials can easily find them by using the registry. The MRA registry will also be an open-access research portal for investigators who can use its data in their studies. “Once we have the data we can study, breakthroughs in treatment will follow,” Asgari stressed.

Eventually, the MRA registry will go global, enabling patients in countries in which rare melanomas are more common to contribute their data, furthering the usefulness of the registry in research and the development of new treatments for people all over the world with acral and mucosal melanomas, Asgari reported. Steven Lemery of the Food and Drug Administration (FDA), who was also on the panel discussion, stressed “As a society, we need to establish these registries to find better ways to treat and prevent these diseases.”

Ensuring patients with rare melanomas have access to clinical trials is also essential. One learning from the pandemic is that more extensive use of telehealth has increased accessibility of clinical trials to more patients. Researchers are shipping patients their investigational drugs, conducting video visits, and doing remote monitoring. These efforts enable more patients to participate in clinical trials, pointed out all the participants in the panel discussion. “Telehealth is fantastic,” said Asgari. “You can save patients having to drive in to be evaluated for things that you can now do more readily online.” Lemery added that the FDA is working with various stakeholders on ways to gather enough data that is more user friendly, so patients who live in a rural area, for example, don’t have to travel to participate in a clinical trial at a major urban center, and instead can have blood and other tests done at their local facilities or at their homes. “There’s no reason we can’t do clinical trials using telehealth to reach rural and other underserved communities,” James Doroshow of the National Cancer Institute (NCI) stressed, noting that NCI hasn’t seen any significant change in the quality of such trials or an increase in adverse side effects when they are run in this decentralized manner. “I hope the future has a more patient-friendly approach to clinical trials with more ability for patients who don’t live in a big city to enroll in them.” Lemery said.

Learn more about melanoma clinical trials and find potential matches:

CureMelanoma.org/ClinicalTrials

Clockwise from left: Elliot Sigal, Steven Lemery, Maryam Asgari, and James Doroshow on the “No Patient Left Behind” panel.
The melanoma treatment field has been rewarded recently with an abundance of riches, including several targeted therapies, checkpoint immunotherapies, and many more experimental treatments in the pipeline. But all these exciting new treatment options for patients can also create complexity and confusion about which treatments patients should receive first, when combination treatment is necessary, when to stop therapy and when to switch to a new treatment altogether. Fortunately, help is on the way in the form of biomarkers — molecular or cellular indicators for whether a patient is likely to respond or is currently responding to their therapy, or whether they are likely to have a recurrence of their cancer.

What are Biomarkers?

At the most basic level, biomarkers are objective and measurable signs that something is or is not taking place within the body. The term is literally a mashup of ‘biological’ and ‘marker’ and is used constantly in modern medicine. Put in a different way, doctors use various biomarkers to determine if your liver is working correctly, to determine if your body is responding appropriately to a medication, or a surgery is successful.

When it comes to melanoma biomarkers, we are often referring to the expression of certain proteins by tumor cells themselves or other cells in the tumor microenvironment, the presence or a specific genetic mutation, or even clinical metrics such as the size of the tumor(s) and location. But relevant biomarkers aren’t only in the tumor or tumor-environment — they can also be found in other parts of the body including cell-free snippets of DNA found in the blood, or the composition of the gut microbiota. Many of these biomarkers are showing promise for aiding treatment decisions for melanoma.
patients, but only one, BRAF mutation status, is currently approved by the Food and Drug Administration (FDA) to distinguish melanoma patients likely to respond to therapies targeting the BRAFV600E mutation in this gene.

How are Biomarkers Measured?

Some biomarkers, such as the size or location of a tumor are easy to measure, but others require the development of sophisticated tests that are able to measure tiny changes in the body, from specific mutations driving a tumor (such as tests designed to measure BRAF status), to the diversity of bacteria in the gut’s microbiome. Keeping the development of new biomarker tests in lockstep with the advancement of new treatment options is important to help guide the use of new therapies.

For example, targeted therapies are currently FDA approved in the treatment of patients with BRAF mutant melanoma. This is great for the half of all patients with cutaneous melanoma who have the mutation, but what of the other half? What if we had no way of knowing who fit into this category without treating everyone — and then simply prayed it would work? Fortunately, researchers developed accurate and reproducible biomarker tests to determine who is likely to benefit from this treatment approach, saving patients without the BRAF mutation from a treatment that isn’t likely to ever work for them.

Developing biomarker tests is important because it gives clinicians information they need to make strategic treatment recommendations for their patients.

What are the Current Challenges and Where are Biomarker Tests Heading?

First and foremost, it isn’t always clear what can be objectively measured — for all patients — to answer some of the most pressing questions faced by clinicians. Second, these tests must be rigorously evaluated in clinical trials before they can be widely adopted.

Current research suggests that a combination of biomarkers may be more informative than measuring a single biomarker such as BRAF status. For example, one pretreatment biomarker panel that relies on six biomarkers for tumor and immune cell features was found to be a much more powerful predictor of risk of melanoma recurrence than its individual components.

One of the more comprehensive approaches to discerning biomarkers is to do a complete genetic analysis of a patient’s tumor via a process called next-generation sequencing (NGS), which is likely to be more informative than a simple genetic test, as multiple genes are now known to play major roles in melanoma. Researchers think that NGS can be useful for melanoma patients because some mutations identified with this technology may be “actionable.” That is, there are approved drugs that may be aligned with specific mutations, often used to treat other forms of cancer, that may be effective in treating melanomas with these mutations.

Clinicians also face the conundrum of whether to treat patients beyond surgery, as the drugs originally approved for unresectable metastatic melanoma are now approved to treat some stage 3 patients, in what is known as the adjuvant setting. Clinical trials are also looking at treating patients with even earlier stages of the disease. Physicians are treating some patients at high risk of having a melanoma recurrence before or shortly after their surgical removal of their tumor with immune and other cancer therapies, in an effort to have “no tumor left behind” even though many of those patients are likely to be cured by

“There are a lot of exciting biomarkers in melanoma, but we’re now looking at the gap between discovery and clinical practice.”

JANICE TAUBE
surgery alone. To help navigate these challenges, clinicians need a better understanding of which patients are most likely to have a recurrence of their melanoma and thus should be subjected to the risks of the drug treatments.

“We have the challenge of colliding multiple biomarkers for multiple therapies,” noted Keith Flaherty of Massachusetts General Hospital. Janice Taube, a dermatopathologist at Johns Hopkins University added, “There are a lot of exciting biomarkers in melanoma, but we’re now looking at the gap between discovery and clinical practice.” Taube and Flaherty were two of about two dozen representatives from industry, the FDA, and academia that the MRA brought together as part of its 2021 Scientific Retreat for a lively roundtable discussion on how to move biomarker development forward and into clinical practice so that more melanoma patients can benefit.

Taube suggested biomarkers currently in the discovery and development stages need to be tested in large clinical trials. The results of such trials can refine the guidelines for how these biomarkers are interpreted, as well as validate their reproducibility and accuracy, and their efficiency, in terms of cost and time. She pointed out unity is lacking in terms of how current biomarkers are used, with cutoff levels for specific biomarkers varying according to the institution at which they are done. She suggested developing more universal guidelines for biomarkers.

MRA’s Chief Science Officer Marc Hurlbert asked whether more extensive NGS analyses should be reserved for melanoma patients not served well by current treatments. Jason Luke of the University of Pittsburgh responded “Everyone agrees that patients with advanced melanoma should have NGS and not just BRAF and that would open up greater space for these patients to participate in clinical trials.” Luke suggested MRA advocate for NGS as part of the standard care for patients with advanced melanoma as a way to inspire insurers to pay for such analyses. Deborah Norton of Novartis agreed that there needs to be clarification of which melanoma patients should have NGS and when. “I think all melanoma patients need it but there is resistance to this from insurers, so a call to action on this would be helpful,” she said. “Is NGS testing ready for prime time is a key point,” Flaherty stressed.

What is Needed to Move the Field Forward?

Before taking new steps to move the field forward, it’s important to make sure that no patients are being left behind. David Solit of Memorial Sloan Kettering Cancer Center suggested that MRA could advocate for the creation of a tiered list of biomarkers seen as standard of care for patients with melanoma, versus those used only in the framework of a clinical trial. Solit noted that insurers based their reimbursement policies on expert statements about when certain treatments or diagnostic tests should be performed, and there is a lack of an expert organization for cancer biomarkers that can make those recommendations. Norton suggested tapping the National Comprehensive Cancer Network (NCCN) to work with for expert biomarker recommendations. NCCN is a non-profit network of 30 Comprehensive Cancer Centers in the United States that publishes treatment guidelines and insurers often follow those guidelines in determining what is covered.

Taube noted there is great academic interest in developing tests that could simultaneously measure multiple biomarkers in a tumor utilizing a single technique such as histrochemistry, thus reducing the tumor sample size needed, but she is disappointed by how these innovative tests are not moving forward and into clinical practice. “How best can we partner with industry and the FDA for them?” she asked. Luke suggested MRA could consider advocating for such multiplex tests as part of standard of care for melanoma patients. Steven Lemery of the FDA added MRA could help establish standards for when patients should be re-biopsied or have blood samples to assess for biomarkers for treatment effectiveness, so as to clarify when insurers should reimburse such procedures.

“Every year biomarkers become more relevant. We have to stop talking about them and do something to drive their use in practice,” Norton stressed.
Agenda, Participants, & Sponsors
Agenda

(All times listed are in EST)

Monday, February 22

11:00am-1:00pm
Scientific Session 1: Novel influences on tumorigenesis and progression
Keynote Lecture: William Kaelin, Dana-Farber Cancer Institute
Speakers: Titia de Lange, The Rockefeller University
Marcin Imieliński, Weill Cornell
Hilary Coller, University of California, Los Angeles
David Lombard, University of Michigan: Oncogenic role of the SIRT5 deacylase in melanoma
6:30-7:30pm
Poster Session 1

Tuesday, February 23

9:30-10:30am
Poster Session 2
11:00am-1:00pm
Scientific Session 2: Novel immunotherapy targets and mechanisms of immune-related adverse events
Keynote Lecture: Jennifer Wargo, University of Texas MD Anderson Cancer Center
Speakers: Pan Zheng, University of Maryland, Baltimore
John Wilson, Vanderbilt University
Kai Wucherpfenning, Dana-Farber Cancer Institute: Molecular Pathways of Colon Inflammation Induced by Checkpoint Blockade
6:30-7:30pm
Networking Roundtables Session 1

Wednesday, February 24

9:30-10:30am
Networking Roundtables Session 2
11:00am-1:00pm
Scientific Session 3: New approaches to detecting and treating melanoma
Keynote Lecture: Richard Marais, Cancer Research UK
Speakers: Keiran Smallley, Moffitt Cancer Centers
Elizabeth Patton, University of Edinburgh
Allan Halpern, Memorial Sloan Kettering Cancer Center
1:30-2:30pm
Moderated Panel Discussion – No Patient Left Behind: Treating & Diagnosing Patients with Unmet Medical Needs.
Panelists: Maryam Asgari, Massachusetts General Hospital, Steven Lemery, US Food and Drug Administration (invited), Ned Sharpless, National Cancer Institute
Participants

Mena Abaskharoun
Oncology Clinical Team Lead
Bristol Meyers Squib
Mena.Abaskharoun@bms.com

Shaad Abdullah
Clinical Program Lead
Immunocore LTD
shaad.abdullah@immunocore.com

Paul Abecassis
pabecassis@me.com

Arnold Abernathy
Founder
Stage Free Melanoma
aabernathy1906@earthlink.net

Cheyl Adams
cheryl.adams@childrensmn.org

Dave Adams
da1@sanger.ac.uk

Adewole Adamson
Assistant Professor
The University of Texas System

Rhoda Alani
Professor and Chair
Boston University School of Medicine

James Allison
Chairman, Department of Immunology;
University of Texas,
MD Anderson Cancer Center
jallison@mdanderson.org

Lauren Alptunaer
lauren.rispoli7@gmail.com

Katherina Alsina
Associate Director, Uveal Melanoma
Castle Biosciences

Ido Amit
Department of Immunology
Weizmann Institute

Niroshana Anandasabapathy
Associate Professor of Dermatology,
Attending Physician
Weill Cornell Medicine Meyer Cancer Center
niroananda@gmail.com

Ana Anderson
Associate Professor
Harvard Medical School
aanderson@rics.bwh.harvard.edu

Margaret Anderson
Board of Directors
Melanoma Research Alliance

Steven Anreder
President & CEO Anreder & Company
steven.anreder@anreder.com

Andrew Aplin
Associate Director
Thomas Jefferson University
andrew.aplin@jefferson.edu

Virginia Aranda
Senior Editor
NATURE
v.aranda@us.nature.com

Charlotte Ariyan
Attending
Memorial Sloan Kettering Cancer Center
ariyanc@mskcc.org

Maryam Asgari
Professor
Massachusetts General Hospital
masgari@partners.org

Michael Atkins
Deputy Director
Georgetown Lombardi Comprehensive Cancer Center
mba41@georgetown.edu

Phyu Aung
Associate Professor
University of Texas, MD Anderson Cancer Center
paung@mdanderson.org

Sandra Aung
VP - Chief Clinical Development Officer
OncoSec Medical Inc.
saung@oncosec.com

Virginia Aznar de Carrillo
Secretary
Melanoma Spain Association
virginia2791984@hotmail.com

Clare Bailhe
President - Financial Sponsors
& LevFin Apollo | MidCap
cbailhe@midcapfinancial.com

Shirin Bajaj
NYU Langone Medical Center
shirin.bajaj@nyulangone.org

Anand Balasubramani
Managing Scientific Editor
American Society for Microbiology
anand.bits@gmail.com

Robert Ballotti
Research Director
Universite Nice Sophia Antipolis
ballotti@unice.fr

Riyue Bao
Co-Director of Cancer Bioinformatics
UPMC Hillman Cancer Center
baor@upmc.edu
Enric Barba Ibañez
Melanoma Spain Association
ebarba@uic.es

Jolyon Barker
Deloitte
jrbarker@deloitte.co.uk

Cody Barnett
Director of Communications
Melanoma Research Alliance
cbarnett@curemelanoma.org

Liron Bar-Peled
Massachusetts General Hospital
lbar-peled@mgh.harvard.edu

Steven Barthel
Instructor
Brigham & Women’s Hospital
sbarthel@rics.bwh.harvard.edu

Boris Bastian
Professor
University of California, San Francisco
boris.bastian@ucsf.edu

Georgia Beasley
Assistant Professor
Duke University
georgia.beasley@duke.edu

Barbara Bedogni
Associate Professor
University of Miami
bxb602@miami.edu

Valerie Behan
Senior Scientific Program Manager
Rising Tide
valerie.behan@risingtide.ch

Reeti Behera
AACR
reetibehera@aacr.org

Maria Bell
Board of Directors
Melanoma Research Alliance

Alfonso Bellacosa
Fox Chase Cancer Center
Alfonso.Bellacosa@fccc.edu

Juliana Berk-Krauss
PGY3 Dermatology Resident SUNY Downstate Medical Center
jberkkrauss@gmail.com

Emily Bernstein
Professor
Icahn School of Medicine at Mount Sinai
emily.bernstien@mssm.edu

Elizabeth Berry
OHSU Department of Dermatology
berryle@ohsu.edu

Corine Bertolotto
Team leader, Research Director, INSERM
Corine.Bertolotto@univ-cotedazur.fr

Nina Bhardwaj
Director of Immunotherapy,
Ward-Coleman Chair in Cancer Research
Icahn School of Medicine at Mount Sinai
nina.bhardwaj@mssm.edu

Jack Biggaine
President
Mollie Biggane Melanoma Foundation
bigganej@optonline.net

Maggie Biggane
President
Mollie Biggane Melanoma Foundation
bigganem@optonline.net

Ken Billett
Patient Advocate
kabillett@gmail.com

Benjamin Black
Board of Directors
Melanoma Research Alliance

Debra Black
Co Founder and Chair Melanoma Research Alliance

Leon Black
Board of Directors
Melanoma Research Alliance

Christian Blank
Netherlands Cancer Institute
c.blank@nki.nl

Kim Blenman
Associate Research Scientist Yale
University kim.blenman@yale.edu

Alexander Boiko
Associate Professor
Cedars-Sinai Cancer Center
AlexBoiko@cshs.org

Gideon Bollag
Plexxikon
gbollag@plexxikon.com

Jean Bolognia
Professor
Yale University

Aislyn D. Boran
Associate Director, Global Biomarkers & Diagnostics, Novartis Oncology

Chris Boris
Deputy Executive Director
Dermatology Foundation

Marcus Bosenberg
Professor of Dermatology, Pathology, Immunobiology, Yale University
marcus.bosenberg@yale.edu

John Bournas
Executive Director
Dermatology Foundation
jebournas@dermatologyfoundation.org

James Braxton
Executive Director
Medical Affairs Castle Biosciences
jbraxton@castlebiosciences.com

Karine Breckpot
Professor
Vrije Universiteit Brussel
karine.breckpot@vub.be

Douglas Brodman
Vice Chairman
Melanoma Research Foundation
adbrodman@gmail.com

Steve Brody
Partner
O’Melveny & Myers LLP
sbrody@omm.com
Participants

Peter Bross
Oncology Branch Team Lead
US Food & Drug Administration
peter.bross@fda.hhs.gov

Trena Brown
Patient Advocate

Elizabeth Buchbinder
Assistant Professor
Dana-Farber Cancer Institute
Elizabeth_Buchbinder@dici.harvard.edu

Timothy Bullock
Associate Professor
University of Virginia
tb5v@virginia.edu

Steven Burakoff
Dean for Cancer Innovation
The Tisch Cancer Institute at Mount Sinai
steven.burakoff@mssm.edu

Melody Burchett
President
A Cure In Sight
melody@acureinsight.org

Christin Burd
Associate Professor
The Ohio State University
burd.25@osu.edu

Karen Burke M.D Ph.D
Clinical Professor, Department of Dermatology
Icahn School of Medicine at Mount Sinai
kebmdphd@gmail.com

Robyn Burns
Science Officer
Melanoma Research Foundation
rburns@melanoma.org

Tal Burstyn-Cohen
Principal Investigator
Hebrew University of Jerusalem
talbu@mail.huji.ac.il

Katherine Byrnes
Executive Director Skin of Steel
kbyrnes@skinofsteel.org

Zachary Cain
Senior Director, US Medical - Early Assets, Biomarkers & Diagnostics
Bristol Meyers Squib

Tracy Callahan
CEO, Founder
Polka Dot Mama Melanoma Foundation
polkadotmamainc@gmail.com

Diane Cannon
Director, Corporate Partnerships
Melanoma UK
diane.cannon@melanoma.uk.org

Joseph Cantor
Staff Scientist II
BD Biosciences

Richard Carvajal
Director of Melanoma Service
Columbia University Irving Medical Center

M. Graciela Cascio
Weill Cornell Medicine
mgc2002@med.cornell.edu

Julide Tok Celebi
Icahn School of Medicine at Mount Sinai
julide.celebi@mountsinai.org

Craig Ceol
University of Massachusetts
craig.ceol@umassmed.edu

Edward Chan
Clinical Research Medical Director
Amgen
echan02@amgen.com

Paul Chapman
Attending Physician
Memorial Sloan Kettering Cancer Center
chapmanp@mskcc.org

Marilu Chavez
Vice President Miggy’s Gift Inc.
miggysgift@gmail.com

Mac Cheever
Member
Fred Hutchinson Cancer Research Center
mcheever@fuchst.org

Helen Chen
Physician and Senior Investigator
National Cancer Institute
helen.chen@nih.gov

Xu Chen
Assistant Professor
The Regents of the University of California, San Francisco
xu.chen@ucsf.edu

Y. Ann Chen
H. Lee Moffitt Cancer Center & Research Institute

Nicolas Chevrier
Assistant Professor
The University of Chicago
nchevrier@uchicago.edu

Jerry Edward Chipuk
Associate Professor & Associate Director of TCI
Icahn School of Medicine at Mount Sinai
jerry.chipuk@mssm.edu

Angela M. Christiano
Co-Chair, Department of Dermatology
(Interim)
Advisory Dean for Basic Scientist Faculty
Columbia University Medical Center
amc65@columbia.edu

Kim Clarke
Program Manager
American Cancer Society
kimc1228@gmail.com

Judith Colin
Patient Advocate
girllfriday33@hotmail.com

Hilary Coller
Professor
University of California, Los Angeles
hcoller@ucla.edu

Clara Curiel
Professor of Dermatology and Chief
University of Arizona Cancer Center
ccuriel@email.arizona.edu

Sue Currie
VP, Head of Medical Affairs Nektar Therapeutics
scurrie@nektar.com
Elvan Daniels
Scientific Director Cancer Control and Prevention
American Cancer Society
elvandaniels@bellsouth.net

Michael Davies
Professor
University of Texas, MD Anderson Cancer Center
mdavies@mdanderson.org

Ellen Davis
Board of Directors
Melanoma Research Alliance

Heather Davis
Patient Advocate

Tamara Dawson
Founder/Director
Melanoma & Skin Cancer Advocacy Network Australia
tamara.dawson@mscan.org.au

Daniela De Zio
Principal Investigator
Danish Cancer Society Research Center
dzio@cancer.dk

Steven Deitcher
President, CEO, and Board Member
Radimmune Therapeutics
srdeitcher@radimmune.com

Veronique del Marmol
CEO
Euromelanoma Europe
v.marmol@skynet.be

Greg Delgoffe
Associate Professor
University of Pittsburgh
delgoffeg@upmc.edu

Julie Dewey
Patient Advocate
jbeans29@aol.com

Scott Diede
Executive Director
Merck & Co.
scott.diede@merck.com

Laura Dimmitt
Medical Affairs/Patient Advocacy
Provectus Biopharmaceuticals
ldimmitt@pvct.com

John D’Orazio
Professor of Pediatrics
University of Kentucky
jdorazio@uky.edu

Leslie Doros
Medical Officer
US Food & Drug Administration
leslie.doros@fda.hhs.gov

Michael Dougan
Assistant Professor
Massachusetts General Hospital
mldougan@partners.org

Stephanie Dougan
Assistant Professor
Dana-Farber Cancer Institute
stephanie_dougan@dfci.harvard.edu

Andrew Dudley
University of Virginia
acd2g@virginia.edu

Ute Dugan
SVP, Clinical Research
Parker Institute for Cancer Immunotherapy
udugan@parkerici.org

Reinhard Dummer
Vice-Chairman
University Hospital Zurich

Ken Dutton-Regester
Research Officer
QIMR Berghofer Medical Research Institute
ken.dutton-regester@qimrberghofer.edu.au

Shelley Earp
Director
The University of North Carolina at Chapel Hill

Michelle Edwards
Senior Director, Medical Affairs
Pfizer
michelle.edwards@pfizer.com

Alexander Eggermont
Erasmus University Medical Center

Amanda Eliian
Board of Directors
Melanoma Research Alliance

Joann Elmore
Professor
University of California, Los Angeles
jelmore@mednet.ucla.edu

Lynne Elmore
Senior Scientific Director
American Cancer Society
llynne.elmore@cancer.org

Victor Engelhard
Director, Carter Professor of Microbiology, Immunology, and Cancer Biology
University of Virginia School of Medicine
vhe@virginia.edu

Neta Erez
Lab Head, Department Chair
Tel-Aviv University
netaerez@tauex.tau.ac.il

Dan Erkes
dan.adam.erkes@gmail.com

Maria Fardis
President & CEO
Iovance Biotherapeutics
maria.fardis@iovance.com

Mark Faries
Professor of Surgery
The Angeles Clinic and Research Institute
mfaries@theangelesclinic.org

Lola Fashoyin-Aje
Deputy Director, Division of Oncology 3
US Food & Drug Administration
lola.fashoyin-aje@fda.hhs.gov

Jason Federici
Board of Directors
Melanoma Research Alliance
Chanda Felton
Program Manager
American Cancer Society
chanda.felton@cancer.org

Linda Fennell
Regional Director of Medical Affairs
Merck & Co.
linda.fennell@merck.com

Andrea Ferris President and CEO
LUNGevity Foundation
aeferris@lungevity.org

Nathanael Fillmore
VA Boston Healthcare System/Harvard Medical School
Nathanael.Fillmore@va.gov

Friedrich Graf Finckenstein
Chief Medical Officer
Iovance Biotherapeutics
friedrich.finckenstein@iovance.com

Rachel Fischer
Senior Associate, Scientific Program & Grants Administration
Melanoma Research Alliance
rfischer@curemelanoma.org

David Fisher
Chief of Dermatology
Massachusetts General Hospital

Keith Flaherty
Director of Developmental Therapeutics
Massachusetts General Hospital
kflaherty@mgh.harvard.edu

Greg Friberg
Vice President Global Development
Amgen
gfriberg@amgen.com

Elaine Fuchs
Investigator, Rebecca C. Lancefield Professor HHMI, The Rockefeller University
fuchslib@rockefeller.edu

Gina Fusaro
Development Program Lead
Bristol Meyers Squib
gina.fusaro@bms.com

Thomas Gajewski
Professor
University of Chicago
tgajewsk@medicine.bsd.uchicago.edu

Neil Ganem
Associate Professor
Boston University School of Medicine
nganem@bu.edu

Levi Garraway
Chief Medical Officer
Genentech/Roche
garraway.levi@gene.com

Christine Garrison
Vice-President
The White Aisle Foundation
thewhiteaisle@comcast.net

Evris Gavathiotis
Professor
Albert Einstein College of Medicine
evripidis.gavathiotis@einsteinmed.edu

Tamar Geiger
Principal Investigator
Tel-Aviv University
geiger@tauex.tau.ac.il

Alan Geller
Harvard University
ageller@hsph.harvard.edu

Pedram Gerami
Northwestern University

Camille Gerard
The Francis Crick Institute
camille.gerard@crick.ac.uk

Jeffrey Gershenwald
Professor
University of Texas, MD Anderson Cancer Center
jgershen@mdanderson.org

Jami Gertz
Board of Directors
Melanoma Research Alliance

Daniel Gioeli
Associate Professor
University of Virginia
dgg3f@virginia.edu

Michael Goldberg
CEO STIMIT
michael@stimittx.com

Jamie Goldfarb
Patient Advocate
jtroll@yahoo.com

Mark Gorman
Patient Advocate
mgormansss@mac.com

Thomas Graeber
Director, UCLA Metabolomics Center
University of California, Los Angeles
tgraeb@mgh.harvard.edu

Richard Granstein
Professor and Chairman
Weill Cornell Medicine
rdgranst@med.cornell.edu

Susanna Greer
Director, Clinical Cancer Research and Immunology
American Cancer Society
Susanna.Greer@cancer.org

Lee Grinberg
Portfolio Manager
Elliott Management Corp
lgrinberg@elliottmgmt.com

Skip Grinberg
Patient Advocate
Meyergrinberg@gmail.com

Patrick Guddal
Executive Director
Connect Melanoma
patrickgman24@gmail.com

Samantha Guild
President
AIM at Melanoma
sguild@aimatmelanoma.org

Carter Haag
Resident
OHSU
haag@ohsu.edu

Ruth Halaban
Senior Research Scientist
Yale University
ruth.halaban@yale.edu
Allan Halpern
Internist & Dermatologist
Memorial Sloan Kettering Cancer Center
halperna@mskcc.org

Amanda Halverstadt McDaniel
Best Day Ever Skin Cancer Awareness, Ltd
amandahalverstadt@gmail.com

Karen Hamel
Director, Patient Advocacy
Novartis Oncology

Omid Hamid
Dir, Melanoma Oncology; Chief, Clinical Research
The Angeles Clinic and Research Institute
ohamid@theangelesclinic.org

Matthew Hangauer
Assistant Professor
University of California, San Diego
mhangauer@ucsd.edu

Brent Hanks
Associate Professor
Duke University
hanks004@mc.duke.edu

Rizwan Haq
Assistant Professor
Dana-Farber Cancer Institute
rizwan_haq@dfci.harvard.edu

J. William Harbour
Professor and Vice Chair
Bascom Palmer Eye Institute
University of Miami Miller School of Medicine
harbour@med.miami.edu

Sushant Hardikar
Senior Medical Director
Eisai Inc.
sushant_hardikar@eisai.com

Rebecca Hartman
Director of Melanoma Epidemiology
Brigham & Women’s Hospital/Harvard Medical School
rhartman@bwh.harvard.edu

Cynthia Hartung
Executive Director, Medical Affairs
Iovance Biotherapeutics
chartung1995@gmail.com

Maitreyee Hazarika
Senior Medical Officer
US Food & Drug Administration

Carolyn Heckman
Co-Leader, Cancer Prevention and Control Program
Rutgers Cancer Institute of NJ
ch842@rutgers.edu

Simon Heidegger
Klinikum rechts der Isar der TU München
simon.heidegger@tum.de

Daisy Helman
Board of Directors
Melanoma Research Alliance

Shawn Helms
President & CEO
Helms Hope Foundation
shawn@helmshope.org

Paul Hergenrother
Professor
University of Illinois at Urbana-Champaign
hergenro@illinois.edu

Eva Hernando
Professor
New York University School of Medicine
Eva.Hernando-Monge@nyulangone.org

Susan Hess
Board of Directors
Melanoma Research Alliance

Jack Hidary
Director
Google

Winston Hide
Beth Israel Medical Center/Harvard Medical School
whide@bidmc.harvard.edu

Ping-Chih Ho
Associate Professor
University of Lausanne
ping-chih.ho@unil.ch

F. Stephen Hodi
Director, Melanoma Disease Center & Center for Immuno-Oncology
Dana-Farber Cancer Institute

Travis Hollmann
Associate Attending
Memorial Sloan-Kettering Cancer Center
hollmant@mskcc.org

Sheri Holmen
Professor
University of Utah
sheri.holmen@hci.utah.edu

Dave Hoon
Professor Director
John Wayne Cancer Institute
hoond@jwci.org

Thomas Hornyak
Associate Chief of Staff for Research & Development
VA Maryland Health Care System/Univ. of Maryland
thomas.hornyak@va.gov

H Timothy Hsiao
American Society for Radiation Oncology
timothy.hsiao@astro.org

Jeanne Hsu
Associate Marketing Director - Oncology
Natera

Ku-Lung Hsu
Associate Professor of Chemistry and Pharmacology
University of Virginia
kenhsu@virginia.edu

Xiaojun Huang
Global Development Lead
Amgen

Leah Hubbard
Program Director National Cancer Institute
leah.hubbard@nih.gov

Willy Hugo
Assistant Adjunct Professor University of California, Los Angeles
hwilly@mednet.ucla.edu

Siwen Hu-Lieskovan
Assistant Professor of Medicine
University of Utah Huntsman Cancer Center
siwen.hu-lieskovan@hci.utah.edu
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marc Hurlbert</td>
<td>Chief Science Officer, Melanoma Research Alliance</td>
<td>mhurlbert@curemelanoma.org</td>
</tr>
<tr>
<td>Adam Hurlstone</td>
<td>University of Manchester, H. Lee Moffitt Cancer Center & Research Institute</td>
<td>adam.hurlstone@manchester.ac.uk</td>
</tr>
<tr>
<td>Patrick Hwu</td>
<td>President & CEO, H. Lee Moffitt Cancer Center & Research Institute</td>
<td></td>
</tr>
<tr>
<td>Ramy Ibrahim</td>
<td>Chief Medical Officer, Parker Institute for Cancer Immunotherapy</td>
<td>ribrahim@parkerici.org</td>
</tr>
<tr>
<td>Marcin Imielinski</td>
<td>Assistant Professor, Weill Cornell Medicine</td>
<td>mai9037@med.cornell.edu</td>
</tr>
<tr>
<td>Kimberly Irvine</td>
<td>Patient Insightt & Advocacy Officer, OncoSec Immunotherapies</td>
<td>kirvine@oncosec.com</td>
</tr>
<tr>
<td>Jeffrey Ishizuka</td>
<td>Assistant Professor of Medicine (Oncology), Yale School of Medicine</td>
<td>jeffrey.ishizuka@yale.edu</td>
</tr>
<tr>
<td>Fumito Ito</td>
<td>Associate Professor of Surgery, Roswell Park Cancer Institute</td>
<td>fumito.ito@roswellpark.org</td>
</tr>
<tr>
<td>Nadia Jabri</td>
<td>Senior Vice President, Medical Affairs, Iovance Biotherapeutics</td>
<td>nadia.m.jabri@gmail.com</td>
</tr>
<tr>
<td>Madan Jagasia</td>
<td>Senior Vice President, Medical Affairs, Iovance Biotherapeutics</td>
<td>madan.jagasia@iovance.com</td>
</tr>
<tr>
<td>Amy Jardon</td>
<td>Patient Advocate, jordon.amy.7691@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Russell Jenkins</td>
<td>Massachusetts General Hospital, rwjenkins@partners.org</td>
<td></td>
</tr>
<tr>
<td>Andy Johnson</td>
<td>Manager, Medical Communications, Idera Pharmaceuticals, ajohnson@iderapharma.com</td>
<td></td>
</tr>
<tr>
<td>Doug Johnson</td>
<td>Associate Professor of Medicine, Vanderbilt University</td>
<td>douglas.b.johnson@vumc.org</td>
</tr>
<tr>
<td>Goran Jonsson</td>
<td>Lund University, Goran_B.Jonsson@med.lu.se</td>
<td></td>
</tr>
<tr>
<td>Sabrina Joseph</td>
<td>Sr. Scientific Program Officer, American Society for Radiation Oncology</td>
<td>sabrina.joseph@astro.org</td>
</tr>
<tr>
<td>Nikhil Joshi</td>
<td>Assistant Professor, Yale University School Of Medicine</td>
<td>nikhil.joshi@yale.edu</td>
</tr>
<tr>
<td>Robert Judson-Torres</td>
<td>Fellow, University of Utah / HCI, robert.judson-torres@hci.utah.edu</td>
<td></td>
</tr>
<tr>
<td>Susan Kaech</td>
<td>Professor, Salk Institute for Biological Studies, skaech@salk.edu</td>
<td></td>
</tr>
<tr>
<td>Anusha Kalbasi</td>
<td>Assistant Professor, University of California, Los Angeles, anushakalbasi@mednet.ucla.edu</td>
<td></td>
</tr>
<tr>
<td>Michael Kaplan</td>
<td>President & CEO, Melanoma Research Alliance, mkaplan@curemelanoma.org</td>
<td></td>
</tr>
<tr>
<td>Rotem Karni</td>
<td>Chair, Department of Biochemistry and Molecular Biology, Hebrew University-Hadasah Medical School, rotemka@ekmd.huji.ac.il</td>
<td></td>
</tr>
<tr>
<td>Brad Karp</td>
<td>Chairman, Paul, Weiss, Bkarp@paulweiss.com</td>
<td></td>
</tr>
<tr>
<td>Florian Karreth</td>
<td>Assistant Member, H. Lee Moffitt Cancer Center & Research Institute</td>
<td>florian.karreth@moffitt.org</td>
</tr>
<tr>
<td>Charles Kaufman</td>
<td>Washington University in Saint Louis, cckaufman@email.wustl.edu</td>
<td></td>
</tr>
<tr>
<td>Howard Kaufman</td>
<td>Head, Research & Development, Immuneering, hkaufman@immuneering.com</td>
<td></td>
</tr>
<tr>
<td>Alissa Keegan</td>
<td>Senior Medical Scientist Amgen, akeega01@amgen.com</td>
<td></td>
</tr>
<tr>
<td>Denise Kellen</td>
<td>Board of Directors, Melanoma Research Alliance, Jeannine Kelly, jeannine_kelly@merck.com</td>
<td></td>
</tr>
<tr>
<td>Priscilla Kelly</td>
<td>Editor, SCIENCE, pkelly@aaas.org</td>
<td></td>
</tr>
<tr>
<td>Jonathan Kentley</td>
<td>Editor, SCIENCES, jonathan.kentley@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Aparna Kesarwala</td>
<td>Assistant Professor, Emory University, aparna.kesarwala@emory.edu</td>
<td></td>
</tr>
<tr>
<td>Shaheen Khan</td>
<td>Assistant Professor, University of Texas at Southwestern Medical Center, shaheen.khan@utsouthwestern.edu</td>
<td></td>
</tr>
</tbody>
</table>
Participants

Nikhil Khushalani
Vice Chair and Senior Member,
Cutaneous Oncology
H. Lee Moffitt Cancer Center & Research
Institute
Nikhil.Khushalani@moffitt.org

Donna Kimbark
Program Manager
CDMRP-Melanoma Research Program
donna.m.kimbark.civ@mail.mil

Tomas Kirchhoff
Perlmutter Cancer Center, NYU Grossman
School of Medicine
Tomas.Kirchhoff@nyumc.org

John Kirkwood
Usher Professor of Medicine,
Dermatology, and Translational Science
UPMC Hillman Cancer Center
kirkwoodjm@upmc.edu

Michael Klowden
Board of Directors
Melanoma Research Alliance

Harriet Kluger
Professor of Medicine (Oncology)
Yale University
harriet.kluger@yale.edu

David Knipe
Higgins Professor of Microbiology and
Immunobiology
Harvard University

Sebastian Kobold
Attending Physician, Professor
Klinikum der Ludwig-Maximilians-
Universität München
sebastian.kobold@med.uni-muenchen.de

Kok-Fai Kong
Senior Research Scientist
Takeda
kokfaikong@gmail.com

John Koomen
Senior Member
H. Lee Moffitt Cancer Center & Research
Institute
john.koomen@moffitt.org

Kivanc Kose
Senior Research Scientist
Memorial Sloan Kettering Cancer Center
kosek@mskcc.org

Michael Krauthammer
Professor
University of Zurich
michael.krauthammer@uzh.ch

Clemens Krepler
Senior Clinical Director
Merck & Co.
clemens.krepler@merck.com

Art Krieg
Chief Scientific Officer
Checkmate Pharmaceuticals
akrieg@checkmatepharma.com

Esther Krofah
Executive Director
FasterCures, a Center of the Milken
Institute
ekrofah@milkeninstitute.org

Ashish Kulkarni
Assistant Professor
University of Massachusetts Amherst
akulkarni@engin.umass.edu

Rajan Kulkarni
Associate Professor
Oregon Health and Science University
kulkarnr@ohsu.edu

Berta L. Sanchez-Laorden
Principal Investigator
Instituto de Neurociencias CSIC-UMH
berta.lopez@umh.es

Benjamin Larimer
Assistant Professor
University of Alabama Birmingham
blarimer@uab.edu

Theresa LaVallee
VP, Translational Medicine & Regulatory
Affairs
Parker Institute for Cancer
Immunotherapy
tlavallee@parkerici.org

Sancy Leachman
Professor & Chair, Department of
Dermatology
Oregon Health & Science University
leachmas@ohsu.edu

Jeffrey Legos
Head, Oncology Development Unit
Novartis Pharmaceuticals Corp.
jeff.legos@novartis.com

Steven Lemery
Director, DO3
US Food & Drug Administration

Eleonora Leucci
PI and head of Trace KU Leuven
eleonora.leucci@kuleuven.be

Carmit Levy
Professor
Tel Aviv University
carmitlevy@post.tau.ac.il

Joan Levy
Senior Director of Special Projects
Melanoma Research Alliance
jlevy@curemelanoma.org

Yung Lie
President and CEO
Damon Runyon Cancer Research
Foundation
yung.lie@damonrunyon.org

Evan Lipson
Associate Professor, Medical Oncology
Johns Hopkins University School of
Medicine
elipson2@jhmi.edu

Kevin Litchfield
Group Leader
University College London kevin.
litchfield@crick.ac.uk

Sixue Liu
University of California, Los Angeles
sxliu0130@gmail.com

Roger Lo
Professor
University of California, Los Angeles
rlo@mednet.ucla.edu
Serigne Lo
Associate Professor
University of Sydney / Melanoma Institute
Australia
Serigne.Lo@melanoma.org.au

Irene Lobon
The Francis Crick Institute

Jeremy Logue
Assistant Professor
Albany Medical College
loguej@mail.amc.edu

David Lombard
Associate Professor of Pathology
University of Michigan
davidlom@umich.edu

Nir London
The Weizmann Institute of Science
nir.london@weizmann.ac.il

Edward Long
Vice President
Van Scyoc Associates
elong@vsadc.com

Georgina Long
Co-Medical Director
Melanoma Institute Australia

Nicole Lopanik
Program Manage
American Cancer Society
nicole.lopanik@cancer.org

Heather Losey
Senior Director, Research Program Lead, Oncology
Alkermes, Inc.
heather.losey@alkermes.com

Michal Lotem
Head, Center for Melanoma and Cancer Immunotherapy
Hadassah Hebrew University Hospital
mlotem@hadassah.org.il

Jason Luke
Associate Professor of Medicine
UPMC Hillman Cancer Center
lukejj@upmc.edu

Amanda Lund
Associate Professor
NYU Langone Health
amanda.lund@nyulangone.org

Herbert Lyerly
Professor
Duke University
kim.lyerly@duke.edu

Paul Macklin
Associate Professor
Indiana University
macklinp@iu.edu

Umar Mahmood
Massachusetts General Hospital

Courtney Malo
Associate Editor
Science Translational Medicine
cmalo@aaas.org

Steve Mao
Editor-in-Chief
Cancer Cell, Cell Press
smao@cell.com

Richard Marais
Director
CRUK Manchester Institute
richard.marais@cruk.manchester.ac.uk

Amy Marbaugh
Melanoma Research Foundation
amarbaugh@melanoma.org

Ashfaq Marghoob
Memorial Sloan Kettering Cancer Center

Kim Margolin
Professor/Physician
City of Hope
kmargolin@coh.org

Chris Marine
Professor VIB
JeanChristophe.Marine@cme.vib-kuleuven.be

Nancy Marks
Board of Directors
Melanoma Research Alliance

Rebecca Marquez
Field Medical Director
Pfizer
rebecca.marquez@pfizer.com

Sharon Marston
President
Jack H. Marston II Melanoma Fund
sharon@jacksfund.org

David Marx
Patient Advocate
dmarx@comcast.net

Grant McArthur
Medical Oncologist
Peter MacCallum Cancer Centre
grant.mcarthur@petermac.org

Scott McKenzie
Scientific Director
Nektar Therapeutics
smckenzie@nektar.com

Mark McLaughlin
Professor
West Virginia University
mark.mclaughlin@hsc.wvu.edu

Martin McMahon
Huntsman Cancer Institute & Dept. of Dermatology
University of Utah
martin.mcmahon@hci.utah.edu

Jennifer McQuade
Assistant Professor
University of Texas, MD Anderson Cancer Center

Janice Mehnert
Associate Director for Clinical Research, Perlmutter Cancer Center
NYU Langone Health
janice.mehnert@nyulangone.org

Ira Mellman
Genentech
mellman.ira@gene.com

Eileen Melnick
Director, Grants & Awards
Conquer Cancer Foundation of the American Society of Clinical Oncology
eileen.melnick@conquer.org

Thorsten Mempel
Associate Professor
Massachusetts General Hospital
tmempel@mgh.harvard.edu
Glenn Merlino
Scientific Director for Basic Research
Center for Cancer Research,
National Cancer Institute
gmerlino@helix.nih.gov

Jane Messina
Senior Member
H. Lee Moffitt Cancer Center & Research Institute
jane.messina@moffitt.org

Martin Mihm, Jr.
Director of Melanoma
Brigham & Women’s Hospital
martin.mihm@bwh.harvard.edu

Mike Milken
Board of Directors
Melanoma Research Alliance

Debbie Miller
Co-Founder
Tara Miller Melanoma Foundation
dmiller8375@gmail.com

George Miller
Co-Founder
Tara Miller Melanoma Foundation
gmiller@gmillerlawfirm.com

Kristen Miller
Co-Founder
Tara Miller Melanoma Foundation
km609@gmail.com

Lauren Miller
Co-Founder
Tara Miller Melanoma Foundation
lmiller1127@gmail.com

Beloo Mirakhur
Clinical Research Medical Director
Amgen

Sandra Misale
Memorial Sloan Kettering Cancer Center
misales@mskcc.org

Tara Mitchell
University of Pennsylvania
tara.mitchell@pennmedicine.upenn.edu

Marsha Mitchum
Medical Officer
US Food & Drug Administration
Marsha.Mitchum@fda.hhs.gov

Nicholas Mitsiades
Associate Professor
Baylor College of Medicine
mitsiade@bcm.edu

Joao Monteiro
Chief Editor Nature Medicine
joao.monteiro@us.nature.com

James Moon
John Gideon Searle Associate Professor
University of Michigan
moonjj@umich.edu

Kristen Mueller
Senior Director, Scientific Program
Melanoma Research Alliance
kmueller@curemelanoma.org

Dennis Murphree
Co-Director, Office of Artificial Intelligence
Mayo Clinic Department of Dermatology
Murphree.Dennis@mayo.edu

Priyadharsini Nagarajan
Associate Professor
University of Texas, MD Anderson Cancer Center
pnagarajan@mdanderson.org

Yana Najjar
Assistant Professor of Medicine UPMC
Hillman Cancer Center
najjaryg@upmc.edu

Nouri Neamati
Professor
The University of Michigan
rogercancercenter@umich.edu

Tobias Neff
Senior Principal Scientist
Merck & Co.
tobias.neff@merck.com

Felicity Newell
Queensland Institute of Medical Research

Julia Newton-Bishop
j.a.newton-bishop@leeds.ac.uk

Angela Nieto
Universidad Miguel Hernandez

Deborah Norton
US Head, Integrated Disease Medical Team, Melanoma/GI
Novartis Oncology

Roberto Novoa
Clinical Associate Professor
Stanford University
novoa@stanford.edu

Steven O’Day
Chief Medical Officer
Agenus Inc stevenjoday@gmail.com

Jill O’Donnell-Tormey
CEO and Director of Scientific Affairs Cancer Research Institute
jtormey@cancerresearch.org

Claire Olingy
AAAS
colingy@aaas.org

Kevin O’Neill
OM Research Patient Advocate
koneill@defeataml.org

Renee Orcione
Development Associate
Melanoma Research Alliance
rorcione@curemelanoma.org

Marlana Orloff
Assistant Professor
Thomas Jefferson University
marlanaorloff@hotmail.com

Patrick Ott
Associate Professor
Dana-Farber Cancer Institute

Willem Overwijk
VP Oncology Research Nektar Therapeutics

Michael Pacold
Assistant Professor
New York University School of Medicine
michael.pacold@nyulangone.org

Nallasivam Palanisamy
Associate Professor
Henry Ford Health System
npalani1@hfhs.org
Participants

Karolina Palucka
Professor and Associate Director of Cancer Immunology
The Jackson Laboratory
karolina.palucka@jax.org

Drew Pardoll
Professor of Oncology, Director Cancer Immunology
Johns Hopkins University

Joshua Parker
Tara Miller Melanoma Foundation

Fernando Pastor
Foundation for Applied Medical Research FIMA

Sapna Patel
Associate Professor
University of Texas, MD Anderson Cancer Center
spatel@mdanderson.org

Anand Pathak
Medical Officer
US Food & Drug Administration Anand. Pathak@fda.hhs.gov

Margie Patlak
Science Writer
Margie Patlak Inc margiepatlak@gmail.com

Elizabeth Patton
Programme Leader and Reader University of Edinburgh
e.patton@igmm.ed.ac.uk

Anna Pavlick
Professor of Medicine and Dermatology
Weill Cornell Medicine
acp9008@med.cornell.edu

Daniel Peeper
Lab Head, Department Chair
The Netherlands Cancer Institute
d.peeper@nkli.nl

Hector Peinado
hpeinado@cnio.es

Weiyi Peng
Assistant Professor
University of Houston
wpeng2@central.uh.edu

Rolando Perez-Lorenzo
Associate Research Scientist
Columbia University
rp2522@cumc.columbia.edu

Louise Perkins
CSO, Emerita
Melanoma Research Alliance
Imperkins@aol.com

Claudia Piazza
President
Melanoma Italia Onlus & Asociacion de Pacientes Melanoma Uruguay/Latino America
pucchio@yahoo.com

Libby Pickard
Patient Advocate
opkva117@gmail.com

Elena Piskounova
Assistant Professor
Weill Cornell Medicine
elp2025@med.cornell.edu

David Polsky
Professor
NYU Langone Health
david.polsky@nyulangone.org

Patricia Possik
Associate Investigator
Brazilian National Cancer Institute
ppossik@inca.gov.br

Michael Postow
Chief, Melanoma Service
Memorial Sloan Kettering Cancer Center
postowm@mskcc.org

Victor Prieto
University of Texas, MD Anderson Cancer Center
vprieto@mdanderson.org

Raj Puri
Director, Division of Cellular and Gene Therapy
US Food & Drug Administration
raj.puri@fda.hhs.gov

Enrica Quattrocchi
Mayo Clinic
Quattrocchi.Enrica@mayo.edu

Derrick Queen
Patient Advocate
dq2020@gmail.com

Osama Rahma
Dana-Farber Cancer Institute
OsamaE_Rahma@dfci.harvard.edu

Kunal Rai
Associate Professor
University of Texas, MD Anderson Cancer Center
krai@mdanderson.org

Milind Rajadhyaksha
Professor
Memorial Sloan Kettering Cancer Center
rajadhyam@mskcc.org

Carla Rake
Patient Advocate
carla_rake@comcast.net

Praveena Raman
Medical Information and Medical Affairs Capability
Nektar Therapeutics
praman@nektar.com

Janine Rauscher
Associate Director, Development & Information Management
Melanoma Research Alliance
jrauscher@curemelanoma.org

Robert Rawson
Tissue Pathology Specialist Melanoma Institute Australia
robert.rawson@health.nsw.gov.au

Patrick Rebholtz
Patient Advocate
rebholtz.patrick@sfo.sysco.com

Jessicca Rege
VP, Clinical Research Oncology
Alkermes, Inc.
jessicca.rege@alkermes.com

Tim Reilly
Senior VP and Early Development Program Lead, Research & Early Development Bristol Meyers Squib
timothy.reilly@bms.com
Participants

Richard Ressler
Board of Directors
Melanoma Research Alliance

Antoni Ribas
Professor of Medicine
University of California, Los Angeles
aribas@mednet.ucla.edu

Carolyn Ricci
Director of Development Melanoma Research Alliance
cricci@curemelanoma.org

Natalie Richardson
Managing Director
Save Your Skin Foundation
natalie@saveyourskin.ca

Ann Richmond
Professor
Vanderbilt University
Ann.richmond@vanderbilt.edu

Todd Ridky
Associate Professor
University of Pennsylvania
ridky@mail.med.upenn.edu

Corey Ritchings
Clinical Development Lead,
Melanoma and Breast Cancer
Bristol Meyers Squib

Caroline Robert
Head of Dermatology
Gustave Roussy
caroline.robert@gustaveroussy.fr

Gavin Robertson
Professor
Penn State College of Medicine
gpr11@psu.edu

C. Daniela Robles-Espinoza
Assistant Professor
National Autonomous University of Mexico
drobles@liigh.unam.mx

Scott Rodig
Dana-Farber Cancer Institute
srodig@partners.org

Mary Jo Rogers
Board of Directors
Melanoma Research Alliance

Antonella Romanini
President elected
Associazione Contro il Melanoma
amvromanin@gmail.com

Ze’ev Ronai
Professor
Sanford Burnham Prebys Medical Discovery Institute
ronai@sbpdiscovery.org

Veronica Rotemberg
Memorial Sloan Kettering Cancer Center
rotembev@mskcc.org

Jeff Rowbottom
Board of Directors
Melanoma Research Alliance

Alicia Rowell
VP
AIM at Melanoma
alicia@aimatmelanoma.org

Will Rubin
Director
Nektar Therapeutics
wrubin@nektar.com

Mark Rubinstein
Associate Professor
Medical University of South Carolina
markrubinstein@musc.edu

Kathy Russell
Principal
KR and Associates
klrussell411@gmail.com

Yvonne Saenger
Assistant Professor Columbia University
yms4@cumc.columbia.edu

Aditi Sahu
Research Scholar
Memorial Sloan Kettering Cancer Center
sahua@mskcc.org

April Salama
Associate Professor
Duke University
april.salama@duke.edu

Yardena Samuels
Associate Professor
Weizmann Institute
yardena.samuels@weizmann.ac.il

Neville Sanjana
Core Faculty Member
New York Genome Center
nsanjana@nygenome.org

Ronit Satchi-Fainaro
Head, Cancer Research and Nanomedicine Laboratory
Tel-Aviv University
ronitsf@tauex.tau.ac.il

Tobias Schatton
Assistant Professor
Harvard Medical School
tschatton@bwh.harvard.edu

Ryan Schoenfeld
CSO
The Mark Foundation for Cancer Research

Craig Schuh
Patient Advocate

Gary Schwartz
Chief, Melanoma-Sacoma Oncology Service Columbia University
schwartzg@columbia.edu

Jamie Schwarzbach
Marketing Manager Natera
jschwarzbach@natera.com

Richard Scolyer
Co-Medical Director Melanoma Institute Australia
richard.scolyer@health.nsw.gov.au

Megan Sealey-Bright
Rosetrees Trust
Mbright@rosetreestrust.co.uk

Aleksandar Sekulic
Assistant Professor, Dermatology Mayo Clinic
sekulic@mayo.edu

Eugene Semenov
Instructor of Dermatology Massachusetts General Hospital/Harvard Medical School
ysemenov@mgh.harvard.edu
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emilee Senkevitch</td>
<td>Science Officer</td>
<td>CDMRP-Melanoma Research Program</td>
<td>emilee.r.senkevitch.civ@mail.mil</td>
</tr>
<tr>
<td>Mark Shackleton</td>
<td>Professor Director</td>
<td>Alfred Health and Monash University</td>
<td>mark.shackleton@monash.edu</td>
</tr>
<tr>
<td>Hunter Shain</td>
<td>Assistant Professor</td>
<td>University of California San Francisco</td>
<td>alan.shain@ucsf.edu</td>
</tr>
<tr>
<td>William Sharfman</td>
<td>Director of Cutaneous Oncology</td>
<td>Johns Hopkins University</td>
<td>sharfwi@jhmi.edu</td>
</tr>
<tr>
<td>Elad Sharon</td>
<td>Senior Investigator</td>
<td>National Cancer Institute</td>
<td>sharone@mail.nih.gov</td>
</tr>
<tr>
<td>T.J. Sharpe</td>
<td>Patient Engagement Program Manager</td>
<td>Medidata Solutions</td>
<td>patient1@tjsharpe.com</td>
</tr>
<tr>
<td>Alexander Shoushtari</td>
<td>Melanoma Medical Oncology</td>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>shoushta@mskcc.org</td>
</tr>
<tr>
<td>Benjamin Shum</td>
<td>The Francis Crick Institute</td>
<td></td>
<td>ben.shum@crick.ac.uk</td>
</tr>
<tr>
<td>Victoria Siegel</td>
<td>Professor</td>
<td>Mollie Biggane Melanoma Foundation</td>
<td>vsiegel@molloy.edu</td>
</tr>
<tr>
<td>Elliott Sigal</td>
<td>Board of Directors</td>
<td>Melanoma Research Alliance</td>
<td></td>
</tr>
<tr>
<td>Mariana Silva</td>
<td>Postdoc</td>
<td>Brigham & Women's Hospital</td>
<td>maraujoalvesdasilva@bwh.harvard.edu</td>
</tr>
<tr>
<td>Steven Silverstein</td>
<td>Chair</td>
<td>Melanoma Research Foundation</td>
<td>ssilverstein@melanoma.org</td>
</tr>
<tr>
<td>Jonathan Simons</td>
<td>Board of Directors</td>
<td>Melanoma Research Alliance</td>
<td></td>
</tr>
<tr>
<td>Anurag Singh</td>
<td>Assistant Professor</td>
<td>Boston University School of Medicine</td>
<td>asingh3@bu.edu</td>
</tr>
<tr>
<td>Rohini Singh</td>
<td>Clinical Director Merck & Co.</td>
<td></td>
<td>rohini.singh@merck.com</td>
</tr>
<tr>
<td>Craig Slingluff</td>
<td>Professor of Surgery; Director, Human Immune Therapy Center</td>
<td>University of Virginia</td>
<td>cls8h@virginia.edu</td>
</tr>
<tr>
<td>Keiran Smalley</td>
<td>Professor and Director</td>
<td>H. Lee Moffitt Cancer Center & Research Institute</td>
<td>keiran.smalley@moffitt.org</td>
</tr>
<tr>
<td>Marisol Soengas</td>
<td>Professor</td>
<td>Spanish National Cancer Research Centre</td>
<td>msoengas@cnio.es</td>
</tr>
<tr>
<td>Jonathan Sokoloff</td>
<td>Board of Directors</td>
<td>Melanoma Research Alliance</td>
<td></td>
</tr>
<tr>
<td>David Solit</td>
<td>Attending Physician, Genitourinary Oncology Service</td>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>solitd@mskcc.org</td>
</tr>
<tr>
<td>Vernon Sondak</td>
<td>Chair of Cutaneous Oncology Department</td>
<td>H. Lee Moffitt Cancer Center & Research Institute</td>
<td>vernon.sondak@moffitt.org</td>
</tr>
<tr>
<td>Maria Sosa</td>
<td>Assistant Professor</td>
<td>Icahn School of Medicine at Mount Sinai</td>
<td>maria.sosa@mssm.edu</td>
</tr>
<tr>
<td>Jeffrey Sosman</td>
<td>Chair</td>
<td>Northwestern Medical</td>
<td>jeffrey.sosman@nm.org</td>
</tr>
<tr>
<td>Howard Soule</td>
<td>Executive Vice President and Chief Science Officer</td>
<td>Prostate Cancer Foundation</td>
<td>hszole@pcf.org</td>
</tr>
<tr>
<td>Lavinia Spain</td>
<td>Visiting Scientist</td>
<td>The Francis Crick Institute</td>
<td>lavinia.spain@crick.ac.uk</td>
</tr>
<tr>
<td>Alan Spatz</td>
<td>Professor/Director, Division of Pathology McGill University</td>
<td></td>
<td>alan.spatz@mcgill.ca</td>
</tr>
<tr>
<td>Neil Spiegler</td>
<td>Executive Director</td>
<td>Peggy Spiegler Melanoma Research Foundation</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Stanton</td>
<td>Board of Directors</td>
<td>Melanoma Research Alliance</td>
<td></td>
</tr>
<tr>
<td>David Stern</td>
<td>Professor</td>
<td>Yale School of Medicine</td>
<td>df.stern@yale.edu</td>
</tr>
<tr>
<td>Edward Stites</td>
<td>Assistant Professor</td>
<td>Salk Institute for Biological Studies</td>
<td>estites@salk.edu</td>
</tr>
<tr>
<td>Erica Stone</td>
<td>Vice President, Oncology GigaGen</td>
<td></td>
<td>ericalynstone@gmail.com</td>
</tr>
<tr>
<td>Ravid Straussman</td>
<td>Principal Investigator</td>
<td>Weizmann institute</td>
<td>ravidst@weizmann.ac.il</td>
</tr>
</tbody>
</table>
Howard Streicher
National Institutes of Health
hs30c@nih.gov

Ryan Sullivan
Assistant Professor Massachusetts
General Hospital
rsullivan7@mgh.harvard.edu

Qi Sun
New York University School of Medicine
qi.sun@nyulangone.org

John Sunwoo
Edward C. and Amy H. Sewall Professor
Stanford University
sunwoo@stanford.edu

Alex Swarbrick
Principal Research Fellow
The Garvan Institute of Medical Research
a.swarbrick@garvan.org.au

Susan Swetter
Professor of Dermatology; Director,
Pigmented Lesion and Melanoma Program
Stanford University Medical Center and Cancer Institute
sswetter@stanford.edu

Yuval Tabach
Senior lecturer
The Hebrew University-Hadassah Medical School
yuvaltab@ekmd.huji.ac.il

Prithviraj Talukdar
Scientific Intern
Melanoma Research Alliance

Zhipeng Tao
Massachusetts General Hospital
ztao@mgh.harvard.edu

Davood Tashayyod
Managing Director
Lumo Imaging
davood@lumoscan.com

Janis Taube
Director of Dermatopathology
Johns Hopkins University
jetaube1@jhmi.edu

Hussein Tawbi
Associate Professor
University of Texas,
MD Anderson Cancer Center
hawbi@mdanderson.org

Alessandro A.E. Testori
Surgical Chairman
EoerC Melanoma Group
info@alessandrotestori.it

Daniela Thommen
Junior group leader
The Netherlands Cancer Institute
d.thommen@nki.nl

Margaret Thompson
Medical Officer
US Food & Drug Administration

Reid Thompson
Assistant Professor
Oregon Health & Science University
thompser@ohsu.edu

Magdalena Thurin
Program Director
National Institutes of Health
thurinm@mail.nih.gov

Roberto Tinoco
Assistant Professor
University of California, Irvine
rtinoco@uci.edu

Keith Tolley
Patient Advocate
j.k.tolley@gmail.com

Suzanne Topalian
Professor of Surgery and Oncology
Johns Hopkins University School of Medicine
stopali1@jhmi.edu

Olivia Tournay Flatto
Executive Director
Pershing Square Sohn Cancer Research Alliance
ottalato@persq.org

Jeffrey Trent
President and Research Director
Translational Genomics Research Institute (Tgen)

Hensin Tsao
Massachusetts General Hospital
Hensintsa@gmail.com

Samra Turajlic
Group Leader
The Francis Crick Institute
samra.turajlic@crick.ac.uk

Chris Twitty
Chief Scientific Officer
OncoSec Medical Inc.
twitty@oncosec.com

Christina Twyman-Saint Victor
Clinical Trial Physician
Bristol Meyers Squib

Douglas Tyler
Chairman, Department of Surgery
University of Texas Medical Branch
dstyler@utmb.edu

Stephan Vagner
Lab head Institut Curie
stephan.vagner@curie.fr

Manuel Valiente
Junior Group Leader CNIO
mvaliente@cnio.es

Joost van den Oord
Emeritus Professor
University Hospitals KU Leuven

Remco van Doorn
Leiden University Medical Center
vandoorn@lumc.nl

Navin Varadarajan
Professor
University of Houston
nvaradarajan@uh.edu

Francisca Vazquez
Broad Institute
vazquez@broadinstitute.org

Olga Vera
H. Lee Moffitt Cancer Center & Research Institute

Matthew Vesely
Assistant Professor Yale University
matthew.vesely@yale.edu
Participants

Jessie Villanueva
Associate Professor
The Wistar Institute
jvillanueva@wistar.org

Rachel Vogel
Assistant Professor
University of Minnesota
isak0023@umn.edu

Kristiina Vuori
President
Sanford Burnham Prebys Medical Discovery Institute

Lindsey Wahlstrom-Edwards
Head of Partnerships Antidote
lindsey@antidote.me

Lixin Wan
H. Lee Moffitt Cancer Center & Research Institute
lixin.wan@moffitt.org

Meng Wang
University of California, San Francisco
meng.wang@ucsf.edu

Yujue Wang
yj.wang0907@gmail.com

Jennifer Wargo
Professor
University of Texas, MD Anderson Cancer Center
jwargo@mdanderson.org

Ian Watson
Assistant Professor
McGill University
ian.watson2@mcgill.ca

David Weber
VP Strategic Collaborations
Caris Life Sciences
Dwweber@carisls.com

Jeffrey Weber
Professor of Medicine
NYU Langone Medical Center

Ashani Weeraratna
Chair and Professor Johns Hopkins University
aweerar1@jhu.edu

Maria Wei
University of California San Francisco
maria.wei@ucsf.edu

Martin Weinstock
Brown University
maw@brown.edu

Forest White
Professor
Massachusetts Institute of Technology
fwhite@mit.edu

Richard White
Assistant Member
Memorial Sloan-Kettering Cancer Center
whiter@mskcc.org

Michael Wichman
Vice President
Anreder & Company
michael.wichman@anreder.com

Ifor Williams
Editor
Science Immunology
iwilliams@aaas.org

James Wilmott
Senior Scientist
The University of Sydney
james.wilmott@sydney.edu.au

Brittany Wilson
COO
Helms Hope Foundation
brittany@helmshope.org

Jesse Wilson
Assistant Professor
Colorado State University
jesse.wilson@colostate.edu

John Wilson
Assistant Professor Vanderbilt University
john.t.wilson@vanderbilt.edu

Melissa Wilson
Associate Professor of Medicine
Sidney Kimmel Cancer Center — Thomas Jefferson University
melissa.wilson@jefferson.edu

Marten Winge
Stanford University
mcgwinge@stanford.edu

Colleen Wittoesch
Patient Advocate
cwittoesch@yahoo.com

Jedd Wolchok
Chief, Melanoma & Immunotherapeutics
Memorial Sloan Kettering Cancer Center
wolchokj@mskcc.org

James Wooldridge
Administrative Assistant
Checkmate Pharmaceuticals
jwooldridge@checkmatepharma.com

Catherine Wu
Professor of Medicine
Dana-Farber Cancer Institute

Xu Wu
Associate Professor
Massachusetts General Hospital
xwu@cbrc2.mgh.harvard.edu

Kai Wucherpfennig
Chair of Dept of Cancer Immunology & Virology
Dana-Farber Cancer Institute
kai_wucherpfennig@dfci.harvard.edu

Qin Yan
Associate Professor
Yale University
qin.yan@yale.edu

Betina Yanez
Associate Professor
Northwestern University Feinberg School of Medicine
betina.yanez@northwestern.edu

Lixing Yang
Assistant Professor
University of Chicago
lixingyang@uchicago.edu

Iwei Yeh
Associate Professor
University of California, San Francisco
iwei.yeh@ucsf.edu

Vashisht Yennu-Nanda
Assistant Professor
University of Texas, MD Anderson Cancer Center
vynanda@mdanderson.org
Thank you to all who attended, presented, and participated in the 2021 MRA Scientific Retreat.
SILVER SPONSORS

CASTLE BIOSCIENCES

CHECKMATE PHARMACEUTICALS

IMMUNOCORE

ONCOSSEC IMMUNOTHERAPIES

REGENERON

SCHOLARSHIP SPONSORS

Eisai

Idera

SUPPORTERS

CARIS LIFE SCIENCES

FOUNDATION MEDICINE

Holland & Knight

Immuneering

LUMO

Natera

RADimmune Therapeutics
As the largest non-profit funder of melanoma research, MRA has dedicated $131 million to date in support of the fight against melanoma.

www.CureMelanoma.org